DOI QR코드

DOI QR Code

Design of Frequency Selective Surface Based Artificial Magnetic Conductor Using the Particle Swarm Optimization

PSO를 이용한 주파수 선택 구조 기반 인공 자기 도체 설계

  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

In this paper, particle swarm optimization(PSO) is applied for the design of frequency selective surface based artificial magnetic conductor. An equivalent circuit model for this artificial magnetic conductor(AMC) with Jerusalem Cross arrays was derived and then PSO was applied for obtaining the optimized geometrical parameters with desired resonant frequency. The resonant frequency and the reflection phase characteristics from the optimization were compared to the results from commercial software for verifying the validity of this paper. The procedure presented in this paper can be applied to design the AMC with different frequency selective surface and also can be used for the design of microwave circuits like the AMC ground planes.

본 논문에서는 주파수 선택 구조를 기반으로 하는 인공 자기 도체 구조를 설계하기 위하여 최적화 알고리즘 중 하나인 particle swarm optimization(PSO) 기법을 이용하였다. 주파수 선택 구조로서 Jerusalem Cross를 갖는 인공 자기 도체의 등가 회로 모델에 PSO를 적용하여, 원하는 공진 주파수 대역을 갖는 최적의 설계값을 얻어낼 수 있음을 확인하였다. 우선 유도한 등가 회로 모델로부터 공진 주파수와 반사 계수 위상 특성을 구하여 상용 소프트웨어로 얻은 값과 일치하는 것을 확인하여 본 논문의 유효함을 확인하였으며, 이로부터 원하는 공진 주파수에 대해 최적화 과정을 통하여 설계 파라미터를 추출하였다. 본 논문에서 유도한 최적화 과정을 이용한 주파수 선택 구조 기반 인공 자기 도체 구조 설계 방법을 이용하여 여러 다른 종류의 주파수 선택 구조 형태를 갖는 인공 자기 도체 구조뿐만 아니라, 인공 자기 도체 구조를 이용한 소형 안테나 접지면 설계 등 마이크로파 회로 설계에 유용하게 사용할 수 있다.

Keywords

References

  1. D. F. Sievenpiper, "High-impedance electromagnetic surfaces", Ph. D. thesis, Univ. Calif., Los Angeles, CA, 1999.
  2. F. Yang, Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.
  3. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microw. Theory Tech., vol. 47, no. 11. pp. 2059-2074, Nov. 1999. https://doi.org/10.1109/22.798001
  4. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces", IEEE Trans. Antennas Propag., vol. 53, no. 1, Jan. 2005. https://doi.org/10.1109/TAP.2004.840540
  5. M. Hosseini, M. Hakkak, "Characteristics estimation for Jerusalem Cross-based artificial magnetic conductors", IEEE Antennas and Wireless Propag. Letters, vol. 7, pp. 58-61, Dec. 2008. https://doi.org/10.1109/LAWP.2008.917605
  6. N. Engheta, "Thin absorbing screens using metamaterial surfaces", IEEE AP-S/URSI Symp Dig., pp. 392-395, 2002. https://doi.org/10.1109/APS.2002.1016106
  7. M. Hosseinipanah. Q. Wu, "Equivalent circuit model for designing of Jerusalem Cross-based artificial magnetic conductors", Radioengineering, vol. 18, no. 4, Dec. 2009.
  8. A. Monorchio, G. Manara, and L. Lanuzza, "Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces", IEEE Antennas and Wireless Propag. Letters, vol. 1, pp. 196-199, Dec. 2002. https://doi.org/10.1109/LAWP.2002.807956
  9. C. R. Simovski, P. de Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle", IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar. 2005. https://doi.org/10.1109/TAP.2004.842598
  10. N. Engheta, R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-Interscience, 2006.
  11. R. J. Langley, E. A. Parker, "Equivalent circuit model for arrays of square loops", Electronics Letters, vol. 18, no. 7, pp. 294-296. 1982. https://doi.org/10.1049/el:19820201
  12. R. J. Langley, E. A. Parker, "Double square frequency selective surfaces and their equivalent circuit", Electronics Letters, vol. 19, no. 17, pp. 675-677, 1983. https://doi.org/10.1049/el:19830460
  13. C. K. Lee, R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence", IEE Proceedings H-Microwaves Optics and Antennas, vol. 132, pp. 395-399, 1985. https://doi.org/10.1049/ip-h-2.1985.0070
  14. D. H. Werner, D. J. Kern, and M. G. Bray, "Advances in EBG design concepts based on planar FSS structures", Proceedings of the Loughborough Antennas and Propagation Conference, pp. 259-262, Apr. 2005.
  15. A. E. Yilmaz, M. Kuzuoglu, "Desgin of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model", Radioengineering, vol. 18, no. 2, Jun. 2009.
  16. R. Garg, I. J. Bahl, "Characteristics of coupled microstriplines", IEEE Trans. on Microwave Theory & Tech., vol. 27, no. 7, pp. 700-705, Jul. 1979. https://doi.org/10.1109/TMTT.1979.1129704
  17. I. Bahl, Lumped Elements for RF and Microwave Circuit, Norwood, Artech House, 2003.
  18. R. Baggen, M. Martinez-Vazquez, J. Leiss, and S. Holzwarth, "Comparison of EBG substrates with and without vias for GALILEO/GPS applications", Proc. EuCAP 2007, Edinburgh, UK, 2007.