The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review

탄소나노튜브-폴리머 복합체의 기능화와 제조방법

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Ko, Weon-Bae (Department of Chemistry, Sahmyook University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.05.17
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. The functionalized CNTs are believed to be very promising in the fields such as preparation of functional and composite materials. CNT-Polymer composites are expected to have good processability characteristics of the polymer and excellent functional properties of the CNTs. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNT-reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, and the alignment and control of the CNTs in the matrix. There are several methods for the dispersion of nanotubes in the polymer matrix such as solution mixing, bulk mixing, melt mixing, in-situ polymerization and chemical functionalization of the carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer composites are described in this review.

탄소나노튜브는 우수한 기계적 특성, 전기적 및 자기적 성질 뿐만 아니라 나노 크기의 직경 및 높은 종횡비를 나타낸다. 이는 고강도 고분자 복합체의 이상적인 보강제로 사용할 수 있다. 기능성이 부과된 탄소나노튜브는 기능성 재료 및 복합재료의 제조와 같은 분야에서 아주 유력한 재료로 믿어진다. 탄소나노튜브-고분자 복합체는 탄소나노튜브의 우수한 기능성과 고분자의 우수한 가공성을 가질 것으로 기대된다. 그러나, 탄소나노튜브는 보통 반 델 바알스 작용에 의한 안정화된 번들을 형성하기 때문에 고분자 기지에 배열이나 분산이 상당히 어렵다. 탄소나노튜브 강화복합체의 제조에서 가장 큰 이슈는 고분자내에 탄소나노튜브의 효과적인 분산이며, 기지내에 탄소나노튜브의 배열과 양의 조절이다. 고분자 기지내에 탄소나노튜브의 분산은 용액혼합, 벌크 혼합, 용융혼합, 즉시 고분자화 반응 및 탄소나노튜브의 화학적 기능화 등과 같은 몇 가지 방법이 있다. 본 논평에서는 이들 방법과 고성능 탄소나노튜브-고분자 복합체의 제조에 대하여 서술하고자 한다.

Keywords

References

  1. S.Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic circuits with carbon nanotube transistors", Science, 294, 1317 (2000).
  3. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, and R.H. Friend, "Composites of carbon nanotubes and conjugated polymers for photovoltaic devices", Adv. Mater., 11, 1281 (1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
  4. A.Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, and I. Khodos, "Supercurrents through single- walled carbon nanotubes", Science, 284, 1508 (1999). https://doi.org/10.1126/science.284.5419.1508
  5. X.L. Xie, Y.W. Mai, and X. Ping, "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Mater. Sci. Eng. Rep., 49, 89 (2005). https://doi.org/10.1016/j.mser.2005.04.002
  6. R. Andrews, and M.C.Weisenberger, "Carbon nanotube polymer composites", Curr. Opin. Solid. State. Mater. Sci., 8, 31 (2004). https://doi.org/10.1016/j.cossms.2003.10.006
  7. M.S. Dresselhaus, G. Dresslhous, and P. Avouris, "Carbon Nanotubes: Synthesis, Structure, Properties and Application", Springer, Berlin, Germany, 2001, pp.11-28.
  8. B.E. Kilbride, J.N. Coleman, J .Fraysse, P. Fournet, M. Cadek, and A. Drury, "Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films", J. Appl. Phys., 92, 4024 (2002). https://doi.org/10.1063/1.1506397
  9. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, and A.T.Johnson, "Carbon nanotube composites for thermal management", Appl. Phys. Lett., 80, 2767 (2002). https://doi.org/10.1063/1.1469696
  10. T.W. Ebbesen, P.M. Ajayan, H. Hiura, and K. Tanigaki, "Purification of nanotubes", Nature, 367, 519 (1994). https://doi.org/10.1038/367519a0
  11. H. Hiura, T.W. Ebbesen, and K. Tanigaki, "Opening and purification of carbon nanotubes in high yields", Adv. Mater., 7, 275 (1995). https://doi.org/10.1002/adma.19950070304
  12. K. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoda, Y. Saito, A. Kasuya, S. Ito, and Y. Nishina, "Purification Procedure for Single-Walled Nanotubes", J. Phys. Chem. B, 101, 1974 (1997). https://doi.org/10.1021/jp962888c
  13. J. Liu, A.G. Rinzler, H.J. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, and R.E. Smalley, "Fullerene pipes", Science, 280, 1253 (1998). https://doi.org/10.1126/science.280.5367.1253
  14. M.S.P. Shaffer, X. Fan, and A.H. Windle, "Dispersion and packing of carbon nanotubes", Carbon, 36, 1603 (1998). https://doi.org/10.1016/S0008-6223(98)00130-4
  15. M.S.P. Shaffer, and A.H. Windle, "Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites", Adv. Mater., 11, 937 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  16. J. Chen, A.M. Rao, S. Lyuksyutov, M.I. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, and R.C. Haddon, "Dissolution of full-length single-walled carbon nanotubes", J. Phys. Chem. B, 105, 2525 (2001). https://doi.org/10.1021/jp002596i
  17. T. Ramanathan, F.T. Fischer, and R.S. Ruoff, "Amino functionalized carbon nanotubes for binding to polymers and biological systems", Chem. Mater., 17, 1290 (2005). https://doi.org/10.1021/cm048357f
  18. Q.D. Chen, L.M. Dai, M. Gao, S.M. Huang, and A. Mau, "Plasma activation of carbon nanotubes for chemical modification", J. Phys. Chem. B, 105, 618 (2001). https://doi.org/10.1021/jp003385g
  19. Y. Lin, B. Zhou, K.A.S. Fernando, P. Liu, and Y.P. Sun, "Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer", Macromolecules, 36, 7199 (2003). https://doi.org/10.1021/ma0348876
  20. C. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, and R. Krishnamoorti, "Dispersion of functionalized carbon nanotubes in polystyrene", Macromolecules, 35, 8825 (2002). https://doi.org/10.1021/ma020890y
  21. G. Viswanathan, N. Chakrapani, H. Yang, B.Wei, H. Chung, K. Cho, C.Y. Ryu, and P.M. Ajayan, "Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites", J. Am. Chem. Soc., 125, 9258 (2003). https://doi.org/10.1021/ja0354418
  22. S. Qin, D. Qin, W.T. Ford, D. Resasco, and J.E. Herrera, "Polymer Brushes on Single-walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate", J. Am. Chem. Soc., 126, 170 (2004). https://doi.org/10.1021/ja037937v
  23. J. Hu, J. Shi, S. Li, Y. Quin, Z. Guo, Y. Song, and D. Zhu, "Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites", Chem. Phys. Lett., 401, 352 (2005). https://doi.org/10.1016/j.cplett.2004.11.075
  24. S. Chen, W. Shen, G. Wu, D. Chen, and M. Jiang, "A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups", Chem. Phys. Lett., 402, 312 (2005). https://doi.org/10.1016/j.cplett.2004.12.035
  25. K. Jiang, L.S. Schadler, R.W. Siegel, X. Zhang, H. Zhang, and M. Terrones, "Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation", J. Mater. Chem., 14, 37 (2004). https://doi.org/10.1039/b310359e
  26. O. Breuer and U. Sundararaj, "Big returns from small fibers: a review of polymer/carbon nanotube composites", Polym. Compos., 25, 630 (2004). https://doi.org/10.1002/pc.20058
  27. M. Moniruzzaman and K.I. Winey, "Polymer nanocomposites containing carbon nanotubes," Macromolecules, 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  28. C. Li, X.J. Pang, M.Z. Qu, Q.T. Zhang, B. Wang, and B.L. Zhang, "Fabrication and characterization of polycarbonate/ carbon nanotubes composites", Compos. Part A, 37, 1485 (2005).
  29. B. Safadi, R. Andrews, and E.A. Grulke, "Multiwalled carbon nanotubes polymer composites: synthesis and characterization of thin films", J. Appl. Polym. Sci., 84, 2660 (2002). https://doi.org/10.1002/app.10436
  30. N.G. Sahoo, Y.C. Jung, H.J. Yoo, and J.W. Cho, "Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites", Macromol. Chem. Phys., 207, 1773 (2006).
  31. N. Pierard, A. Fonseca, Z. Konya, I. Willems, G. Van Tendeloo, and J.B.Nagy, "Production of short carbon nanotubes with open tips by ball milling", Chem. Phys. Lett., 335, 1 (2001). https://doi.org/10.1016/S0009-2614(01)00004-5
  32. H. Xia, Q.Wang, K. Li, and G.H. Hu, "Preparation of CNT/polypropylene composite powder with a solid state mechanochemical pulverization process", J. Appl. Polym. Sci., 93, 378 (2004). https://doi.org/10.1002/app.20435
  33. S. Ghose, K.A. Watson, K.J. Sun, J.M. Criss, E.J. Siochi, and J.W. Connell, "High temperature resin carbon nanotube composite fabrication", Compos. Sci. Technol., 66, 1995 (2006). https://doi.org/10.1016/j.compscitech.2006.01.008
  34. A. Ikeda, K. Hayashi, T. Konishi, and J.I. Kikuchi, "Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique", Chem. Commun., 11, 1334 (2004).
  35. C.A. Cooper, D. Ravich, D. Lips, J. Mayer, and H.D.Wagner, "Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix", Compos. Sci. Technol., 62, 1105 (2002). https://doi.org/10.1016/S0266-3538(02)00056-8
  36. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, and I.Winey, "Aligned single-wall carbon nanotubes in composites by melt processing methods", Chem. Phys. Lett., 330, 219 (2000). https://doi.org/10.1016/S0009-2614(00)01013-7
  37. Z. Jin, K.P. Pramoda, G. Xu, and S.H. Goh, "Dynamic mechanical behavior of melt-processed multiwalled carbon nanotube/ poly(methyl methacrylate) composites", Chem. Phys. Lett., 337, 43 (2001). https://doi.org/10.1016/S0009-2614(01)00186-5
  38. P. Potschke, T.D. Fornes, and D.R. Paul, "Rheological behaviour of multiwalled carbon nanotubes/polycarbonate composites", Polymer, 43, 3247 (2002). https://doi.org/10.1016/S0032-3861(02)00151-9
  39. N. Hu, H. Zhou, G. Dang, X. Rao, C. Chen, and W. Zhang, "Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization", Polym. Int., 56, 655 (2007). https://doi.org/10.1002/pi.2187
  40. C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, "Thermal conductivity improvement of silicone elastomer with CNT loading", Appl. Phys. Lett., 84, 4248 (2004). https://doi.org/10.1063/1.1756680
  41. F.H. Gojny, M. Wichmann, U. Kopke, B. Fiedler, and K.Schulte, "CNT-reinforced epoxy composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64, 2363 (2004). https://doi.org/10.1016/j.compscitech.2004.04.002