Effect of Carbon Black Concentration and Monomer Compositional Ratio on the Flow Behavior of Copoly(styrene/butyl methacrylate) Particles

카본블랙의 농도 및 단량체 구성비에 따른 스티렌-부틸메타크릴레이트 공중합체 입자의 유동성

  • Park, Moon-Soo (Department of Polymer Engineering, University of Suwon) ;
  • Moon, Ji-Yeon (Department of Polymer Engineering, University of Suwon)
  • 박문수 (수원대학교 신소재공학과) ;
  • 문지연 (수원대학교 신소재공학과)
  • Received : 2010.04.18
  • Accepted : 2010.05.04
  • Published : 2010.06.30

Abstract

We measured shear viscosity of copoly(styrene(St)/butyl methacrylate(BMA)) (co-PSB) particles, with a capillary rheometer at $170^{\circ}C$, prepared by suspension polymerization with hydrophobic silica as a stabilizer. co-PSB particles with the weight average molecular weights of lower than 74,800 g/mol displayed a Newtonian behavior at low shear rates. With the weight average molecular weight exceeding 136,800 g/mol, co-PSB particles showed shear thinning against shear rates and the absolute value of the slopes between shear viscosity vs. shear rate increased. When the ratio between St and BMA changed from 7/3 to 5/5 to 3/7, shear viscosity and glass transition decreased despite similar molecular weights. When the ratio was 1/9, it showed a large increase in initial shear viscosity despite reduced glass transition. Shear viscosity exhibited an increase in proportion to carbon black concentration. The effect of carbon black concentration on the shear viscosity of co-PSB composites was less pronounced compared to varying molecular weights and/or compositional ratio.

소수성실리카를 안정제로 하는 현탁중합반응법을 이용하여 합성한 스티렌(St)/부틸메타크릴레이트(BMA) 공중합체 (co-PSB) 입자의 전단점도를 모세관 레오미터 (capillary rheometer)를 이용하여 $170^{\circ}C$에서 측정하였다. co-PSB 입자의 전단점도는 중량평균분자량이 74,800 g/mol 이하인 경우 낮은 전단속도에서는 뉴톤거동을 보였다. 중량평균분자량이 136,800 g/mol을 초과하면서 전단점도는 전단속도의 전 영역에 걸쳐 감소하였고 전단속도에 대한 기울기의 절대값은 분자량의 증가와 함께 증가하였다. St/BMA의 구성비가 7/3, 5/5 및 3/7의 co-PSB 입자는 유사한 분자량을 나타내었지만 BMA의 구성비가 증가하면서 유리전이온도와 전단점도는 감소하였다. St/BMA의 구성비가 1/9 인 co-PSB의 경우 유리전이온도는 더욱 감소하였으나 초기 전단점도는 크게 증가하였다. 카본블랙을 함유하는 co-PSB 복합체 입자의 전단점도는 카본블랙의 증가에 따라 증가하였으나, 카본블랙의 농도에 따른 전단점도의 변화는 분자량 및/혹은 구성비의 변화 효과에 비교하여 미약하였다.

Keywords

References

  1. P. Tsotra and K. Friedrich, "Electrical and mechanical properties of functionally graded epoxy-resin/carbon fiber composites", Composites Part A, 34, 75 (2003). https://doi.org/10.1016/S1359-835X(02)00181-1
  2. L. Zhou, Y. Sun, G. Yang, and Y. P. Zhou, "Hydrogen and methance sorption in dry and water-loaded multiwall carbon nanotubes", J. Colloid Interface Sci., 289, 347 (2005). https://doi.org/10.1016/j.jcis.2005.03.091
  3. I. S. Kim and P. M. Kumta, "Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling", J. Power Sources, 13, 145 (2004).
  4. J. S. Kim, W. Y. Yoon, K. S. Yoo, G. S. Park, C. W. Lee, Y. Murakami, and D. Shindo, "Charge-discharge properties of surface-modified carbon by resin-coating in Li-ion battery", J. Power Sources, 14, 175 (2005).
  5. M. Alexandre and P. Dubois, "Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials", J. Mater. Sci. Eng., 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  6. J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, J. Vazquez-Torres, L. F. Garfias-Mesias and D. R. Paul, "Thermal degradation of commercially available organoclays studied by TGA-FTIR", Thermochimica Acta, 457, 92 (2007). https://doi.org/10.1016/j.tca.2007.03.008
  7. D. B. Zax, D. K. Ynag, R. A. Santos, H. Hegemann, E. P. Giannels, and E. P. Manias, "Dynamical heterogenity in nanoconfined polystyrene chains", J. Chem. Phys., 112, 2945 (2000). https://doi.org/10.1063/1.480867
  8. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiral야, R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, "Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites", J. Polym. Sci., Part B: Polym. Phys., 40, 852 (2002). https://doi.org/10.1002/pola.10169
  9. C. Zhao, H. Qin, F. Gong, M. Feng, S. Zhang, and M. Yang, Mechanical, "Thermal and flammability properties of polyethylene/ clay nanocomposites", Polym. Degradation and Stability, 87, 183 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.08.005
  10. S. Hambir, N. Bulakh, and J. P. Jog, "Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic Mechanical Behavior", Polym. Eng. Sci., 42, 1800 (2002). https://doi.org/10.1002/pen.11072
  11. S. Gu, J. Ren, and Q. Wang, "Rheology of poly(propylene)/clay nanocomposites", J. Appl. Polym. Sci., 91, 2427 (2004). https://doi.org/10.1002/app.13403
  12. T. D. Lam, T. V. Hong, D. T. Quang, and J. S. Kim, "Effect of nanosized and surface-modified precipitated calcium carbonate on properties of $CaCO_{3}$/polypropylene nanocomposites", Materials Sci. Eng. A, 501, 87 (2009). https://doi.org/10.1016/j.msea.2008.09.060
  13. G. N. Jimenez, N. Ogata, H. Kawai, and T. Ogihara, "Structure and thermal/mechanical properties of poly ($\epsilon$-caprolactone)-clay blend", J. Appl. Polym. Sci., 64, 2221 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2221::AID-APP18>3.0.CO;2-6
  14. C. A. Wah, L. Y. Choong, and G. S. Neon, "Effects of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled propylene", Euro. Polym. J., 36, 789 (2000). https://doi.org/10.1016/S0014-3057(99)00123-8
  15. Z. Demjen, B. Pukanszky, and J. Nagy, "Evaluation of interfacial interaction in polypropylene/surface treated $CaCO_{3}$ composites", Composites, 29A, 323 (1998).
  16. J. D. Lee and S. M. Yang, "Rheo-optical behaviors and stability of a silica particle suspension coated with silane coupling agents", J. Colloid Interface Sci., 205, 397 (1998). https://doi.org/10.1006/jcis.1998.5651
  17. G. Genskens, A. Etoc, and P. Di Michele, "Surface modification of polymers VII. Photochemical grafting of acrylamide and N-isopropylacrylamide onto polyethylene initiated by anthraquinone- 2-sulfonate adsorbed at the surface of the polymer", Eur. Polym. J., 36-2, 265 (2000).
  18. N. V. Bhat and D. J. Upadhyay, "Plasma-induced surface modification and adhesion enhancement of polypropylene surface", J. Appl. Polym. Sci., 86-4, 925 (2002).
  19. N. Dilsiz and G. Akovali, "Plasma surface modification of carbon fibers: a review", J. Adhesion and Tech., 14-7, 975 (2000).
  20. S. Kawasaki, M. Yamada, K. Kobori, T. Kakumoto, F. Jin, A. Tarutani, and T. Takada, "Extraordinary High Carbon Filler- Incorporating and Dispersing Ability of 9,9-Diarylflurene-based Polymers as Matrix Resins", Polym. J., 39-2, 115 (2007).
  21. J. He, B. Yan, S. Wang, Y. Zeng, and Y. Wang, "The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystals", Eur. Polym. J., 43, 2745 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.030
  22. M. P. Grosvenor and J. N. Staniforth, "The effect of molecular weight on the rheological properties of poly($\epsilon$-caprolactone)", Inter. J. Pharm., 135, 103 (1996). https://doi.org/10.1016/0378-5173(95)04404-3
  23. A. Lazaridou, C. G. Biliaderis, and V. Kontogiorgos, "Molecular weight effects on solution rheology of pullulan and mechanical properties of its films", Carbohydrate Polym., 52, 151 (2003). https://doi.org/10.1016/S0144-8617(02)00302-8
  24. M. Park, "Suspension polymerization with hydrophobic silica as a stabilizer II. Preparation of polystyrene composite particles containing carbon black", Polym. (Korea), 30-6, 505 (2006).
  25. J. Moon and M. Park, "Suspension polymerization with hydrophobic silica as a stabilizer II. Poly(butyl methacrylate) composite particles containing carbon black", Polym. (Korea), 33-5, 477 (2009).
  26. M. Park, "Flow behavior of polystyrene and poly(butyl methacrylate) composite particles filled with varying concentrations of carbon black", Elastomer, 44-3, 336 (2009).
  27. J. Brandrup and E. Immergut, Polymer Handbook, 3rd ed. page II/222(1989).
  28. Encyclopedia of polym. Sci. & Eng, 2nd ed., H. mark, N. Bikales, C. Overberger and G. Menges, 15, 560 (1989).