Study on PLLA Alloys with Impact Modifier and Talc

충격 보강제와 탈크를 이용한 PLLA 얼로이 연구

  • Jeong, Dong-Seok (Department of Applied Chemical Engineering, Korea University of Technology and Education.) ;
  • Nam, Byeong-Uk (Department of Applied Chemical Engineering, Korea University of Technology and Education.) ;
  • Jang, Mi-Ok (Department of Applied Chemical Engineering, Korea University of Technology and Education.) ;
  • Hong, Chae-Hwan (Hyundai-Kia Motor Co., Ltd.)
  • 정동석 (한국기술교육대학교 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 응용화학공학과) ;
  • 장미옥 (한국기술교육대학교 응용화학공학과) ;
  • 홍채환 (현대자동차)
  • Received : 2010.04.30
  • Accepted : 2010.06.10
  • Published : 2010.06.30

Abstract

In this work, PLLA/EGMA blends were prepared by melt blending of biodegradable Poly-L-lactic acid(PLLA) with Poly(ethylene-co-glycidyl methacrylate)(EGMA) and Engage as impact modifiers by twin screw extruder. Blend compositions of PLLA/Impact modifier blends were 100/0, 75/25, 50/50, 25/75 and 0/100, respectively. Also, Talc was added to 3 PLLA rich phases on PLLA/EGMA blends. The morphology, viscoelastic/mechanical properties were characterized by FESEM, DMA, UTM and Izod impact tester. DMA and Izod impact test data showed that storage modulus at room temperature with increasing EGMA and Engage contents decreased, and impact strength increased. However, storage modulus at room temperature increased by adding talc. From FESEM image, we observed that domain phase was well dispersed into matrix. Although the tensile strength and flexural modulus were decreased with increasing the content of EGMA and Engage in them, they could be supplemented by adding talc.

본 연구는 이축 압출기를 사용하여 생분해성 고분자인 Poly-L-lactic acid(PLLA)와 충격보강제로 Poly (ethylene-co-glycidyl methacrylate)(EGMA)와 Engage를 각각 PLLA에 대해 100/0, 75/25, 50/50, 25/75, 0/100의 조성으로 블렌드를 제조하였고, 3개의 PLLA/EGMA 블렌드에는 탈크를 첨가하였다. 이를 DMA, FESEM, UTM, Izod 충격시험기를 사용하여 PLLA 블렌드의 모폴로지와 점탄성, 기계적 특성을 측정하였다. DMA와 충격시험기의 측정결과 EGMA와 Engage의 함량이 증가함에 따라 상온에서의 저장탄성률이 감소하였고, 충격강도는 증가하였다. 한편 탈크가 첨가되면 저장탄성률은 증가하고 충격강도는 감소하였다. FESEM 분석으로부터, 매트릭스에 도메인이 잘 분산되어 있음을 알 수 있었고, UTM을 통하여 EGMA와 Engage의 함량이 증가하면 굴곡탄성률과 인장강도가 감소되지만, 탈크를 첨가함으로써 이를 보완할 수 있었다.

Keywords

References

  1. B. Y. Shin, B. H. Cho, K. H. Hong, and B. S. Kim, "Morphology and Rheological Property of PLA/PCL Blend Compatibilized by Electron Beam Irradiation", Polymer(Korea), 33, 588 (2009).
  2. K. I. Han and H. J. Kang, "Microbial Degradation of Poly(ethylene naphthalate) /Polycaprolactone Blends", Polymer(Korea), 22, 596 (1998).
  3. Y. Min, S. Lee, J. K. Park, K. Y. Cho, and S. J. Sung, "Effect of Composition and Synthetic Route on the Microstructure of Biodegradable Diblock Copolymer, Poly($\epsilon$-caprolactone-co-Llactide)- b-Poly(ethylene glycol)", Macromol. Res., 16, 231 (2008). https://doi.org/10.1007/BF03218858
  4. Y. S. You, K. H. So, and M. S. Chung, "Trends in Development and Marketing of Degradable Plastics", Korea J. Food SCI. Technol., 40, 365 (2008).
  5. S. Ishida, R. Nagasaki, K. Chino, T. Dong, and Y. Inoue, "Toughening of Poly(L-lactide) by Melt Blending with Rubbers", J. Appl. Polym. Sci., 113, 558 (2009). https://doi.org/10.1002/app.30134
  6. J. R. Lee, S. W. Chun, and H. J. Kang, "Crystallizatin Behavior of Poly(lactic acid)/Poly($\epsilon$-caprolactone) Blends", Polymer(Korea), 27, 285 (2003).
  7. D. Carlson, P. Dubois, and R. Narayan, "Free Radical Branching of Polylactide by Reactive Extrusion", Polym. Eng. Sci., 38, 311 (1998). https://doi.org/10.1002/pen.10192
  8. M. Harada, K. Lida, K. Okamoto, H. Hayashi, and K. Hirano, "Reactive Compatibilization of Biodegradable Poly(lactic acid)/ Poly($\epsilon$-caprolactone) Blends with Reactive Processing Agents", Polym. Eng. Sci., 84, 1359 (2008).
  9. Y. Q. Xu and J. P. Qu, "Mechanical and Rheological Properties of Epoxidized Soybean Oil Plasticized Poly(lactic acid)", J. Appl. Polym. Sci., 112, 3185 (2009). https://doi.org/10.1002/app.29797
  10. H. Tsuji and S. Miyauchi, "Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness", Polymer, 42, 4463 (2001). https://doi.org/10.1016/S0032-3861(00)00792-8
  11. S. Jacobsen and H. G. Fritz, "Plasticizing polylactide - the effect of different plasticizers on the mechanical properties", Polym. Eng. Sci., 39, 1303 (1999). https://doi.org/10.1002/pen.11517
  12. S. Jacobsen, H. G. Fritz, Ph. Degée, Ph. Dubois and R. Jérôme, "Polylactide (PLA) - a new way of production", Polym. Eng. Sci., 39, 1311 (1999). https://doi.org/10.1002/pen.11518
  13. M. S. Reeve, S. P. McCarthy, M. J. Downey, and R. A. Gross, "Polylactide Stereochemistry: Effect on Enzymatic Degradability", Macromolecules, 27, 825 (1994). https://doi.org/10.1021/ma00081a030
  14. H. T. Oyama, "Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer", Polymer, 50, 747 (2009). https://doi.org/10.1016/j.polymer.2008.12.025
  15. H. F. Guo, S. Packirisamy, N. V. Gvozdic, and D. J. Meier, "Prediction and manipulation of the phase morphologies of multiphase polymer blends: 1. Ternary systems", Polymer, 38, 785 (1997). https://doi.org/10.1016/S0032-3861(96)00571-X
  16. J. H. Kim and Y. S. Soh, "Improvement of Impact Properties of Multicomponent Polymer Blends", Polymer(Korea), 23, 869 (1999).
  17. E. Hage, W. Hale, H. Keskkula, and D. R. Paul, "Impact modification of poly(butylene terephthalate) by ABS materials", Polymer, 38, 3237 (1997). https://doi.org/10.1016/S0032-3861(96)00879-8
  18. C. H. Tasi and F. C. Chang, "Polymer Blends of PBT and PP Compatibilized by Ethylene co-glycidyl Methacrylate Copolymers", J. Appl. Polym. Sci., 61, 321 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960711)61:2<321::AID-APP15>3.0.CO;2-6
  19. C. K. Lee, M. S. Cho, I. H. Kim, J. D. Nam, and Y. K. Lee, "Effect of Zeolite Filler on the Thermal and Mechanical Properties of Cellulose Diacetate", Polymer(Korea), 33, 243 (2009).
  20. S. C. Tjong and Y. Z. Meng, "Effect of reactive compatibilizers on the mechanical properties of polycarbonate / poly(acrylonitrile- butadiene-styrene) blends", European Polymer Journal, 36, 123 (2000). https://doi.org/10.1016/S0014-3057(99)00044-0
  21. G. Wildes, H. Keskkula, and D. R. Paul, "Fracture characterization of PC/ABS blends: effect of reactive compatibilization, ABS type and rubber concentration", Polymer, 40, 7089 (1999). https://doi.org/10.1016/S0032-3861(98)00865-9
  22. C. L. Simoes, J. C. Viana, and A. M. Cunha, "Mechanical properties of poly($\epsilon$-caprolactone) and poly(lactic acid) blends", J. Appl. Polym. Sci., 112, 345 (2009). https://doi.org/10.1002/app.29425
  23. D. Wu, Y. Zhang, M. Zhang, and W. Zhou, "Phase behavior and its viscoelastic response of polylactide/poly($\epsilon$-caprolactone) blend", Eur. Polym. J., 44, 2171 (2008). https://doi.org/10.1016/j.eurpolymj.2008.04.023
  24. H. U. Jeon, S. W. Kim, G. H. Kim, I. Kim, and C. S. Ha, "Properties of Poly(oxymethylene)/ Modified Poly[styrene-b- (ethylene-1-butene)-b- styrene] Triblock Copolymer Blends", Polymer(Korea), 28, 162 (2004).