DOI QR코드

DOI QR Code

Electrocatalytic Oxidation of HCOOH on an Electrodeposited AuPt Electrode: its Possible Application in Fuel Cells

  • Uhm, Sung-Hyun (Ertl center for Electrochemistry and Catalysis, School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jeon, Hong-Rae (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Jae-Young (Ertl center for Electrochemistry and Catalysis, School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2010.08.23
  • 심사 : 2010.09.07
  • 발행 : 2010.09.30

초록

Controlled electrodeposition of dendritic nano-structured gold-platinum (AuPt) alloy onto an electrochemically pretreated carbon paper substrate was conducted in an attempt to improve catalyst utilization and to secure an electronic percolation network toward formic acid (FA) fuel cell application. The AuPt catalysts were obtained by potentiostatic deposition. AuPt catalysts synthesized as bimetallic alloys with 60% Au content exhibited the highest catalytic activity towards formic acid electro-oxidation. The origin of this high activity and the role of Au were evaluated, in particular, by XPS analysis. Polarization and stability measurements with 1 mg $cm^{-2}$ AuPt catalyst (only 0.4 mg $cm^{-2}$ Pt) showed 52 mW $cm^{-2}$ and sustainable performance using 3M formic acid and dry air at $40^{\circ}C$.

키워드

참고문헌

  1. J. Lipkowski and P.N. Ross, Electrocatalysis; Wiley-VCH: New York (1998).
  2. W. Vielstich, Fuel Cells; Modern Process for the Electro-chemical Production of Energy; Wiley-Interscience: London (1965).
  3. S. Nakabayashi, I. Yagi, N. Sugiyama, K. Tamura, and K. Uosaki, Surf. Sci., 386, 82 (1997). https://doi.org/10.1016/S0039-6028(97)00329-4
  4. S. Song and P. Tsiakaras, Appl. Catal. B: Environ., 63, 187 (2006). https://doi.org/10.1016/j.apcatb.2005.09.018
  5. S. Uhm, H.J. Lee, Y. Kwon, and J. Lee, Angew. Chem. Int. Ed. 47, 10163 (2008). https://doi.org/10.1002/anie.200803466
  6. S. Kang, J. Lee, J.K. Lee, S.-Y. Chung, and Y. Tak, J. Phys. Chem. B, 110, 7270 (2006). https://doi.org/10.1021/jp056753v
  7. S. Uhm, S.T. Chung, and J. Lee, Electrochem. Commun., 9, 2027 (2007). https://doi.org/10.1016/j.elecom.2007.05.029
  8. S. Uhm, S.T. Chung, and J. Lee, J. Power Sources, 178, 34 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.016
  9. S. Uhm, Y. Kwon, S.T. Chung, and J. Lee, Electrochim. Acta, 53, 5162 (2008). https://doi.org/10.1016/j.electacta.2008.02.052
  10. S. Uhm, H.J. Lee, and J. Lee, Phys. Chem. Chem. Phys., 11, 9326 (2009). https://doi.org/10.1039/b909525j
  11. Y. Zhu, S. Ha, and R.I. Masel, J. Power Sources, 130, 8 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.051
  12. X. Wang, J-M. Hu, and I-M. Hsing, J. Electroanal. Chem., 562, 73 (2004). https://doi.org/10.1016/j.jelechem.2003.08.010
  13. http://www.fuelcellmarkets.com/cabot/news_and_information/3,1,6270,1,13970.html
  14. V. Baglio, A. Di Blasi, E. Modica, P. Cretì, V. Antonucci, and A.S. Arico, J. New Mat. Electrochem. Systems, 9, 41 (2006).
  15. S. Ha, R. Larsen, and R.I. Masel, J. Power Sources, 144, 28 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.031
  16. S. Ha, R. Larsen, Y. Zhu, and R.I. Masel, Fuel Cells, 4, 337 (2005). https://doi.org/10.1002/fuce.200400052
  17. R. Larsen, S. Ha, J. Zakzeski, and R.I. Masel, J. Power Sources, 157, 78 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.066
  18. E. Rach and J. Heitbaum, Electrochim. Acta, 32, 1173 (1987). https://doi.org/10.1016/0013-4686(87)80030-0
  19. L.D. Burke and B.H. Lee, J. Electroanal. Chem., 330, 637 (1992). https://doi.org/10.1016/0022-0728(92)80334-Z
  20. J. Xiang, B.-L. Wu, and S.-L. Chen, J. Electroanal. Chem., 517, 95 (2001). https://doi.org/10.1016/S0022-0728(01)00680-5
  21. G.L. Beltramo, T.E. Shubina, and M.T M. Koper, Chem Phys Chem, 5, 2597 (2005).
  22. J-H. Choi, K-J. Jeong, Y. Dong, J. Han, T-H. Lim, J-S Lee, and Y-E. Sung, J. Power Sources, 163, 71 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
  23. J.K. Lee, J. Lee, J. Han, T-H. Lim, Y-E. Sung, and Y. Tak, Electrochim. Acta, 53, 3474 (2008). https://doi.org/10.1016/j.electacta.2007.12.031
  24. M. Eikerling, A.A. Kornyshev, and A.A. Kulikovsky, in: Encyclopedia of Electrochemistry, Vol. 5 (Eds. A. Bard, M. Stratmann, D. MacDonald) (2003).
  25. M. Eikerling, A.S. Loselevich, and A.A. Kornyshev, Fuel Cells, 4, 131 (2004). https://doi.org/10.1002/fuce.200400029
  26. E.J. Taylor, E.B. Anderson, and N.R.K. Vilambi, J. Electrochem. Soc., 139, L45 (1992). https://doi.org/10.1149/1.2069439
  27. F. Gloaguen, J.-M. Leger, and C. Lamy, J. Appl. Electrochem., 27, 1052 (1997). https://doi.org/10.1023/A:1018434609543
  28. O. Antoine and R. Durand, Electrochem. Solid-State Lett., 4, A55 (2001). https://doi.org/10.1149/1.1361233
  29. H. Natter and R. Hempelmann, Electrochim. Acta, 49, 51 (2003). https://doi.org/10.1016/j.electacta.2003.04.004
  30. S.L. Chen and A. Kucernak, J. Phys. Chem. B, 107, 8392 (2003). https://doi.org/10.1021/jp0348934
  31. H. Kim, N.P. Subramanian, and B.N. Popov, J. Power Sources, 138, 14 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.012
  32. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, and Y. Yan, Nano Lett., 4, 345 (2004). https://doi.org/10.1021/nl034952p
  33. Z.D. Wei and S.H. Chan, J. Electroanal. Chem., 569, 23 (2004). https://doi.org/10.1016/j.jelechem.2004.01.034
  34. J. Lee, J. Seo, K. Han, and H. Kim, J. Power Sources, 163, 349 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.018
  35. Z.D. Wei, S.G. Chen, Y. Liu, C.X. Sun, Z.G. Shao, and P.K. Shen, J. Phys. Chem. C, 111, 15456 (2007). https://doi.org/10.1021/jp073360i
  36. A. Wieckowski, E.R. Savinova, and C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surface; Marcel Dekker, Inc.: New York, Basel (2003).
  37. V.M. Jovanovic, D. Tripkovic, A. Tripkovic, A. Kowal, and J. Stoch, Electrochem. Commun., 7, 1039 (2005). https://doi.org/10.1016/j.elecom.2005.07.009
  38. A.R. Layson and M.R. Columbia, Microchem. J., 56, 103 (1997). https://doi.org/10.1006/mchj.1996.1440
  39. S. Toyama, O. Takei, M. Tsuge, R. Usami, K. Horikoshi, and S. Kato, Electrochem. Commun., 4, 540 (2002). https://doi.org/10.1016/S1388-2481(02)00366-1
  40. L.M. Plyasova, I.Y. Molina, A.N. Gavrilov, S.V. Cherepanova, O.V. Cherstiouk, N.A. Rudina, E.R. Savinova, and G.A. Tsirlina, Electrochim. Acta, 51, 4477 (2006). https://doi.org/10.1016/j.electacta.2005.12.027
  41. W.H. Lizcano-Valbuena, V.A. Paganin, C.A.P. Leite, F. Galembeck, and E.R. Gonzalez, Electrochim. Acta, 48, 3869 (2003). https://doi.org/10.1016/S0013-4686(03)00523-1
  42. M. Carmo, V.A. Pagnin, J.M. Rosolen, and E.R. Gonzalez, J. Power Sources, 142, 169 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.023
  43. D.V. Leff, P.C. Ohara, J.R. Heath, and W.M. Gelbart, J. Phys. Chem., 99, 7036 (1995). https://doi.org/10.1021/j100018a041
  44. J.D. Grunwaldt, C. Kiener, C. Wogerbauer, and A. Baiker, J. Catal., 181, 223 (1999). https://doi.org/10.1006/jcat.1998.2298
  45. W.F. Yan, V. Petkov, S.M. Mahurin, S.H. Overbury, and S. Dai, Catal. Commun., 6, 404 (2005). https://doi.org/10.1016/j.catcom.2005.04.004
  46. J. Choi, K. Park, I. Park, K. Kim, J. Lee, and Y. Sung, J. Electrochem. Soc., 153, A1812 (2006). https://doi.org/10.1149/1.2224055
  47. H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, and S.Z. Yao, Carbon, 42, 191 (2004). https://doi.org/10.1016/j.carbon.2003.10.023
  48. Y.Y. Shao, G.P. Yin, J.J. Wang, Y.Z. Gao, and P.F. Shi, J. Electrochem. Soc., 153, 1261 (2006). https://doi.org/10.1149/1.2195878
  49. N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998). https://doi.org/10.1039/a805753b
  50. S. Hufner and G. K. Wertheim, Phys. Rev. B, 11, 678 (1975). https://doi.org/10.1103/PhysRevB.11.678
  51. A.K. Shukla, A.S. Arico, K.M. El-Khatib, H. Kim, P.L. Antonucci, and V. Antonucci, Appl. Surf. Sci., 137, 20 (1999). https://doi.org/10.1016/S0169-4332(98)00483-8
  52. J. Knecht, G. Stark, and Frencius, Z. Anal. Chem., 289, 206 (1978). https://doi.org/10.1007/BF00440272
  53. Y.J. Huang, D. Li, and J.H. Li, Chem. Phys. Lett., 389, 14 (2004). https://doi.org/10.1016/j.cplett.2004.03.019
  54. L. Qiu, F. Liu, L. Zhao, W. Yang, and J. Yao, Langmuir, 22, 4480 (2006). https://doi.org/10.1021/la053071q
  55. D.B. Laurence, Gold Bull., 37, 125 (2004). https://doi.org/10.1007/BF03215520
  56. H. Kita and H.W. Lei, J. Electroanal. Chem., 388, 167 (1995). https://doi.org/10.1016/0022-0728(95)03871-D
  57. I. Becerik and F. Kadirgan, J. Electrochem. Soc., 148, D49 (2001). https://doi.org/10.1149/1.1360186
  58. D. Mott, J. Luo, P.N. Njoki, Y. Lin, L. Wang, and C-J. Zhong, Catal. Today, 122, 378 (2007). https://doi.org/10.1016/j.cattod.2007.01.007
  59. M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142, 4143 (1995). https://doi.org/10.1149/1.2048477
  60. M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142, 463 (1995). https://doi.org/10.1149/1.2044068
  61. E. Bosco, J. Electroanal. Chem., 366, 43 (1994). https://doi.org/10.1016/0022-0728(93)02988-T
  62. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi, Electrochim. Acta, 46, 799 (2001). https://doi.org/10.1016/S0013-4686(00)00679-4

피인용 문헌

  1. Electrocatalytic properties of Au electrodes decorated with Pt submonolayers by galvanic displacement of copper adatoms vol.130, 2014, https://doi.org/10.1016/j.electacta.2014.02.148
  2. Pt–CeO2/reduced graphene oxide nanocomposite for the electrooxidation of formic acid and formaldehyde vol.5, pp.90, 2015, https://doi.org/10.1039/C5RA09770C
  3. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid vol.70, 2012, https://doi.org/10.1016/j.electacta.2012.03.071
  4. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation vol.212, 2016, https://doi.org/10.1016/j.electacta.2016.07.062
  5. Peculiarities in the electrocatalytic behavior of ultralow platinum deposits on gold synthesized by galvanic displacement vol.756, 2015, https://doi.org/10.1016/j.jelechem.2015.08.004