DOI QR코드

DOI QR Code

Enhancement of MCFC System Performance by Adding Bottoming Cycles

하부 사이클 추가에 의한 MCFC 시스템의 성능향상

  • Received : 2010.04.26
  • Accepted : 2010.08.15
  • Published : 2010.10.01

Abstract

Integration of various bottoming cycles such as the gas turbine (GT) cycle, organic Rankine cycle, and oxy-fuel combustion cycle with an molten carbonate fuel cell (MCFC) power-generation system was analyzed, and the performance of the power-generation system in the three cases were compared. Parametric analysis of the three different integrated systems was carried out under conditions corresponding to the practical use and operation of MCFC, and the optimal design condition for each system was derived. The MCFC/oxy-combustion system exhibited the greatest power upgrade from the MCFC-only system, while the MCFC/GT system showed the greatest efficiency enhancement.

고온형 연료전지인 MCFC 발전시스템에 가스터빈, 유기매체 랜킨 사이클, 순산소 연소 사이클 등 다양한 하부 사이클을 추가한 통합시스템들의 성능을 비교 해석하였다. MCFC 시스템의 성능과 운전조건을 바탕으로 하여 각 추가 시스템의 주요 설계 변수 변화에 따른 통합시스템의 성능 변화를 해석하였고 이로부터 각 시스템의 최적 성능을 도출하였다. 각 시스템을 비교하여 MCFC와 최적의 결합을 나타내는 시스템을 분석하였는데, MCFC/OXY 시스템이 MCFC 단독 시스템에 비하여 가장 큰 출력 증가를 나타내었으며, MCFC/GT 시스템의 효율 증가가 가장 큰 것으로 나타났다.

Keywords

References

  1. Williams, M. C., Strakey, J. and Sudoval, W., 2006, "U.S. DOE Fossil Energy Fuel Cell Program," Journal of Power Sources, Vol. 159, pp. 1241-1247. https://doi.org/10.1016/j.jpowsour.2005.12.085
  2. Williams, M. C., Strakey, J. P., and Singhal S. C., 2004, "U.S Distributed Generation Fuel Cell Program," Journal of Power Sources, Vol.131, pp. 79-85. https://doi.org/10.1016/j.jpowsour.2004.01.021
  3. Costamagna, P., Magistri, L. and Massardo, A. F., 2001, "Design and Part-load Performance of a Hybrid System based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine," J. Power Sources, Vol. 96, pp. 352-368. https://doi.org/10.1016/S0378-7753(00)00668-6
  4. Yi, Y., Rao, A. D., Brouwer, J. and Samuelsen, G. S., 2004, Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine(SOFC-ICGT) Hybrid Cycle, J. Power Sources, Vol. 132, pp. 77-85. https://doi.org/10.1016/j.jpowsour.2003.08.035
  5. Yang, J. S., Sohn, J. L. and Ro, S. T., 2007, "Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid System with Vatious Part-load control Modes," J. Power Sources, Vol. 166, pp. 155-164. https://doi.org/10.1016/j.jpowsour.2006.12.091
  6. Yang, W. J., Park, S. K., Kim, T. S., Kim, J. H., Sohn, J. L. and Ro, S. T., 2006, "Design Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems considering Temperature Constraints," J. Power Sources, Vol. 160, pp. 462-473. https://doi.org/10.1016/j.jpowsour.2006.01.018
  7. Park, S. K. and Kim, T. S., 2006, "Comparison between Pressurized Design and Ambient Pressure Design of Hybrid Solid Oxide Fuel Cell-Gas Turbine Systems," J. Power Sources, Vol. 163, pp. 490-499. https://doi.org/10.1016/j.jpowsour.2006.09.036
  8. Park, S. K., Oh, K. Y. and Kim, T. S., 2007, "Analysis of the Design of a Pressurized SOFC Hybrid System using a Fixed Gas Turbine Design," Journal of Power Sources, Vol. 170, pp. 130-139. https://doi.org/10.1016/j.jpowsour.2007.03.067
  9. Ghezel-Ayagh, H., Walzak, J., Patel, D., Daly, J., Maru, H., Sanderson, R. and Livingood, W., 2005, "State of Direct Fuel Cell/Turbine Systems Development," Journal of Power Sources, Vol. 152, pp. 219-225. https://doi.org/10.1016/j.jpowsour.2004.12.060
  10. Bischoff, M., Huppmann, G., 2002, "Operating Experience with a 250kWel Molten Carbonate Fuel Cell (MCFC) Power Plant," J. of Power Sources, Vol. 105, pp. 216-221. https://doi.org/10.1016/S0378-7753(01)00942-9
  11. Grillo, O., Magistri, L. and Massardo, A. F., 2003, "Hybrid Systems for Distributed Power Generation based on Pressurisation and Heat Recovering of an Existing 100kW Molten Carbonate Fuel Cell, J. of Power Sources, Vol. 115, pp. 252-267. https://doi.org/10.1016/S0378-7753(02)00730-9
  12. Oh, K. S. and Kim, T. S., 2006, "Performance Analysis on Various System Layouts for the Combination of an Ambient Pressure Molten Carbonate Fuel Cell and a Gas Turbine," Journal of Power Sources, Vol. 158, pp. 455-463. https://doi.org/10.1016/j.jpowsour.2005.09.032
  13. Jericha. H., Sanz. W., Gottlich. E. and Neumayer. F., 2008, "Design Details of a 600MW Graz Cycle Thermal Power Plant for $CO_2$ Capture," ASME paper, GT2008-50515.
  14. Pronske. K., Trowsdale. L., Macadam. S. and 'Vic' Viteri. F., 2006, "An Overview of Turbine and Combustor Development for Coal-Based Oxy-Synbgas Systems," ASME paper, GT2006-90816.
  15. Sanz, W., Jericha, H., Bauer, B. and Gottlich, E., 2007, "Qualitative and Quantitative Comparison of Two Promising Oxy-fuel Power Cucles for $CO_2$ Capture," ASME paper, GT2007-27375.
  16. Park, B. C., Sohn, J. L., Kim, T. S., Ahn, K. Y., Kang, S. H. and Lee, Y. D., 2010, "Parametric Analysis of the Performance of Water Recirculated Oxy-fuel Power Generation Systems," Trans. of the KSME(B), Vol. 34, No. 1. pp. 35-43. https://doi.org/10.3795/KSME-B.2010.34.1.35
  17. Tak, S. H., Park, S. K., Kim, T. S., Sohn, J. L. and Lee, Y. D., 2009, "Performance Analysis of an Oxy-fuel Combustion Power Generation system Based on Waste Heat Recovery: Influence of $CO_2$ Capture," Trans. of the KSME(B), Vol. 33, No. 2. pp. 968-976. https://doi.org/10.3795/KSME-B.2009.33.12.968
  18. Pak, B. S., Lee, Y. D. and Ahn, K. Y., 2009, "Characteristics and Economics Evaluation of a $H_2O$ Turbine Reheat Cycle Power Generation System based on Oxy-Combustion Method for Utilizing Exhaust Gas of Large Scale MCFC," Proc. of the KSME 2009 Fall Annual Meeting, Nov. 4-6, 2009.
  19. Gou, C., Ruixian, C. and Hong, H., 2007 "A Novel Hybrid Oxy-fuel Power Cycle Utilizing Solar Thermal Energy," Energy, Vol.32, pp. 1707-1714. https://doi.org/10.1016/j.energy.2006.12.001
  20. Yamamoto, T., Furuhata, T., Arai, N. and Moric, K., 2001, "Design and Testing of the Organic Rankine Cycle," Energy, Vol. 26, pp. 239-251. https://doi.org/10.1016/S0360-5442(00)00063-3
  21. Zyhowski, G. J., 2003, "Opportunities for HFC-245FA Organic Rakine Cycle Appended to Distributed Power Generation Systems," ICR0508, International Congress of Refrigeration 2003.
  22. Saleh, B., Koglbauer, G., Wendland, M. and Fischer, J., 2007, "Working Fluids for Low-Temperature Organic Rankine Cycles," Energy, Vol. 32, pp. 1210-1221. https://doi.org/10.1016/j.energy.2006.07.001
  23. Bruno, J. C., Lopez-Villada, J., Letelier, E., Romera, S. and Coronas, A., 2008, "Modelling and Optimisation of Solar Organic Rankine Cycle Engines for Reverse Osmosis Desalination," Applied Thermal Engineering, Vol. 28, pp. 2212-2226. https://doi.org/10.1016/j.applthermaleng.2007.12.022
  24. Lee, J. H. and Kim T. S., 2006, "Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems," Journal of Mechanical Science and Technology, Vol. 20, pp. 1502-1513. https://doi.org/10.1007/BF02915973
  25. Vielstich, W., Lamm, A. and Gasteiger, H. A., 2004, Handbook of Fuel Cells, vol. 4, John Wiley & Sons, Chichester, pp. 907–941.
  26. Aspen Technology, HYSYS, ver. 2006.5.
  27. Darde, A., Prabhakar, R., Tranier, J. P. and Perrin, N., 2009, "Air Separation and Flue Gas Compression and Purification Units for Oxy-coal Combustion Systems," Energy Procedia, Vol. 1, pp. 527-534. https://doi.org/10.1016/j.egypro.2009.01.070

Cited by

  1. Performance Prediction and Economic Assessment of Atmospheric Pressure MCFC/Gas Turbine Hybrid System with Indirect Turbine Firing vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-B.2014.38.1.031