DOI QR코드

DOI QR Code

Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion

대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향

  • Han, Man-Bae (Dept. of Mechanical and Automotive Engineering, Keimyung Univ.)
  • 한만배 (계명대학교 기계자동차공학과)
  • Received : 2010.07.05
  • Accepted : 2010.08.18
  • Published : 2010.10.01

Abstract

This study aims to investigate the effects of soybean biodiesel fuel on exhaust emissions with regards to two combustion modes: conventional combustion(existence of PM-NOx trade-off behavior) and low temperature combustion(LTC) in a 1.7 L common rail direct injection diesel engine. As compared to conventional combustion, LTC was achieved by adopting a heavier exhaust gas recirculation and strategic injection parameter optimization. Two sets of fuels, i.e. ultra low sulfur diesel(ULSD) and 20% volumetric blends of soybean biodiesel with ULSD(B20) were used. Regardless of the fuel type, in LTC the simultaneous reduction of PM and NOx was observed and both levels were significantly lower than in case of conventional combustion. Under the given engine operating condition in the case of conventional combustion, B20 produced less PM and more NOx than ULSD. In the case of LTC combustion, B20 produced more PM and NOx than ULSD.

1.7L 커먼레일 직접분사 디젤엔진에 대하여 바이오 디젤 연료가 conventional 연소(PM-NOx 트레이드오프 존재)와 저온 연소(low temperature combustion, LTC)에서 배기가스 배출에 미치는 영향을 분석하였다. LTC 연소는 conventional 연소 대비 다량의 EGR 과 연료분사 조건 최적화를 통하여 이루어졌다. 실험에 사용한 두 가지 연료는 초저유황 디젤연료(ultra low sulfur diesel fuel, ULSD), ULSD 에 대두유를 20%(vol. base)혼합한 바이오 디젤 연료(B20)이다. 사용된 연료에 관계없이 LTC 연소를 통하여 conventional 연소 대비 PM 및 NOx 의 동시 저감이 가능하였다. 동일한 엔진작동 조건에 대하여 conventional 연소의 경우 B20 는 ULSD 보다 PM은 적게 배출되나, NOx 는 많이 배출되었다. LTC 연소의 경우 B20 는 ULSD 보다 PM 및 NOx 생성이 많았다.

Keywords

References

  1. Graboski, M. S. and McCormick, R. L., 1998, "Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines," Prog. Energy combust. Sci., Vol. 24, pp. 125-164. https://doi.org/10.1016/S0360-1285(97)00034-8
  2. Agarwal, A. K., 2007, "Biofuels(Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines," Prog. Energy Combust. Sci., Vol. 33, pp. 233-271. https://doi.org/10.1016/j.pecs.2006.08.003
  3. United States Environmental Protection Agency, 2002, "A Comparative Analysis of Biodiesel Impacts on Exhaust Emissions," EPA 420-P-02-001.
  4. Lee, C. S., Park, S. W., and Kwon, S. I., 2005, "An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels," Energy & Fuels, Vol. 19, No. 5, pp. 2201-2208. https://doi.org/10.1021/ef050026h
  5. Song, J., Zello, V., and Boehman, A. L., 2004, "Comparison of the Impact of Intake Oxygen Enrichment and Fuel Oxygenation on Diesel Combustion and Emissions," Energy & Fuels, Vol. 18, No. 5, pp. 1282-1290. https://doi.org/10.1021/ef034103p
  6. Boehman, A. L., Morris, D., and Szybist, J., 2004, "The Impact of the Bulk Modulus of Diesel Fuels on Fuel Injection Timing," Energy & Fuels, Vol. 18, No. 6, pp. 1877-1882. https://doi.org/10.1021/ef049880j
  7. Szybist, J. P., Song, J., Alam, M., and Boehman, A. L., 2007, "Biodiesel Combustion, Emissions and Emission Control," Fuel Processing Technology, Vol. 88, pp. 679-691. https://doi.org/10.1016/j.fuproc.2006.12.008
  8. Musculus, M., 2005, "Measurements of Influence of Soot Reduction on In-Cylinder Temperature and Exhaust NOx in a Heavy-Duty DI Diesel Engine," SAE paper 2005-01-0925.
  9. McCormick, R. L., Graboski, M. S., Alleman, T. L., and Herring, A. M., 2001, "Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants from a Heavy-Duty Engine," Environ. Sci. Technol., Vol. 35, No. 9, pp. 1742-1747. https://doi.org/10.1021/es001636t

Cited by

  1. The Effect of Bio-diesel Fuel on Industrial Diesel Engine vol.36, pp.1, 2012, https://doi.org/10.5916/jkosme.2012.36.1.72