DOI QR코드

DOI QR Code

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems

다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구

  • Shin, Chang-Hoon (Research & Development Division, Korea Gas Corporation) ;
  • An, Seung-Hee (Research & Development Division, Korea Gas Corporation) ;
  • Lee, Jeong-Hwan (Research & Development Division, Korea Gas Corporation) ;
  • Sung, Won-Mo (Dept. of Natural Resources and Environmental Engineering, Hanyang Univ.)
  • 신창훈 (한국가스공사 연구개발원) ;
  • 안승희 (한국가스공사 연구개발원) ;
  • 이정환 (한국가스공사 연구개발원) ;
  • 성원모 (한양대학교 자원환경공학과)
  • Received : 2010.05.31
  • Accepted : 2010.07.27
  • Published : 2010.10.01

Abstract

Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.

대부분의 석유 가스전은 탄화수소혼합물과 일반기체 등 저류층 내부 유체의 성분조성에 따라 저류층내 상거동 특성이 매우 민감하게 변화한다. 석유 가스전의 평가와 개발 생산계획을 수립함에 있어, 이러한 상거동에 따른 기체와 액체의 성분비 결정과 석유와 가스의 이상유동 해석을 위한 저류유체의 PVT관계 및 포화물성의 규명은 필수적이다. 이중에서 특히, 포화물성의 계산은 수렴성이 나빠, 이상 유동의 해석적 연구에 있어서 많은 어려움을 초래하는 원인이 되고 있다. 이에 본 연구에서는 포화물성 의 계산에 있어서 수렴도 향상을 위한 새로운 초기값 추정 방법과 근 탐색 알고리듬을 제안하고, 성능비교 등을 통한 수렴도 영향인자에 대한 분석을 시도하였다. 결과적으로, 제안된 방법을 통해 포화물성 해석 수렴성을 개선하였고 GUI 기반의 새로운 다성분 다상거동해석 시뮬레이터의 개발에 적용하였다.

Keywords

References

  1. Ahmed T., 1989, Hydrocarbon Phase Behavior, Gulf Publishing Company, Houston, TX.
  2. Soave, G., 1972, "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., Vol. 27, pp. 1197-1203. https://doi.org/10.1016/0009-2509(72)80096-4
  3. Peng, D. U. and Robinson, D. B., 1976, "A New two-constant equation of State," Ind. Eng.F Chem. Fundam., Vol. 15, pp. 59-64. https://doi.org/10.1021/i160057a011
  4. Nikos, V., 1986, "Phase Behavior of Systems Comprising North Sea Reservoir Fluids and Injection Gases," JPT, Vol 38, No. 11 pp. 1221-1233. https://doi.org/10.2118/12647-PA
  5. Styjek, R. and Vera, J. H., 1986, PRSV : "An Improvement Peng-Robinson Equation of State for Pure Compounds and Mixtures," Canadian J. Chem. Eng., Vol. 64, pp. 323-333. https://doi.org/10.1002/cjce.5450640224
  6. Jhaveri, B. S. and Youngren, G. K., 1988, "Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions," SPE Reservoir Engineering 13118, Vol. 3, No. 3, pp. 1033-1040. https://doi.org/10.2118/13118-PA
  7. ISO/FDIS-18453, 2004, Natural gas - Correlation Between Water Content and Water Dew Point, ISO standard.
  8. Varotsis N., 1989, "A Robust Prediction Method for Rapid Phase-Behavior Calculations,"SPERE, SPE 16943, Vol 4, No. 2, pp. 237-243. https://doi.org/10.2118/16943-PA
  9. Youngcheol Ha, Seongmin Lee, Jaeyoung Her, Kangjin Lee, and Seunjun Lee, 2009, "Calculation of the Hydrocarbon and Water Dew Points of Natural Gas," Korean Chemical Engineering Research, Vol. 47, No. 5, pp. 565-571.
  10. Michael L. Michelsen, 1994, "A Simple Method for Calculation of Approximate Phase Boundaries," Fluid Phase Equilibria, Vol. 98, pp. 1-11. https://doi.org/10.1016/0378-3812(94)80104-5