DOI QR코드

DOI QR Code

Correlation of Human Carpal Motion and Electromyogram

인체 수관절 운동과 근전도의 상관관계

  • Received : 2010.04.23
  • Accepted : 2010.07.12
  • Published : 2010.10.01

Abstract

In this experimental study, we have examined the correlation between a human carpal motion and a surface electromyogram. The carpal motion patterns have been identified and the main muscles involved in the carpal motion have been determined by investigating the anatomical structure of a carpal. The torque acting against the carpal motion has been applied by using a device for carpal rehabilitation training, and the surface electromyogram signal corresponding to the torque at the main muscles has been measured. The root-mean-square (RMS) magnitude of the surface electromyogram signal has been calculated and used to analyze the correlation between the surface electromyogram signal and carpal motion. The experimental results have proved that for carpal torque values below $0.1\;N{\cdot}m$, the RMS magnitude of the surface electromyogram signal is linearly proportional to the carpal torque magnitude and that the carpal torque magnitude is linearly proportional to the cross-sectional area of the carpal muscles. Further, the analysis of the contribution of each muscle to the carpal motion has shown that the contribution of the most dominant muscle is consistently 60%. These three results can be applied to develop more sophisticated devices or robots for carpal rehabilitation training.

본 논문은 인체 수관절 운동과 표면 근전도의 상관관계를 실험적으로 다룬다. 수관절의 해부학적 구조를 분석하여, 수관절 운동 형상을 파악하고 운동을 발생시키는 주요 근육을 선정하였다. 수관절 재활 훈련 장치를 이용하여 수관절 운동에 저항하는 토크를 가하고, 이 때 주요 근육에서 토크에 따른 표면 근전도 신호를 측정하였다. 측정된 표면 근전도 신호의 크기를 계산하여 수관절 운동과의 연관성 분석에 사용하였다. 실험 결과로부터 수관절 토크와 표면 근전도 신호의 크기가 토크 $0.1\;N{\cdot}m$ 이하의 수관절 운동에서는 선형적으로 비례함을 밝혔고, 수관절 근육의 단면적에 따라 표면 근전도 신호의 크기도 선형적으로 비례함을 확인하였다. 또한 수관절 운동에 관여하는 각 근육의 기여도를 분석한 결과, 각 운동을 발생시키는 가장 주도적인 2개의 근육 중에서 한 근육의 기여도가 약 60 %로서 일관성 있게 나타났다. 이러한 세 가지 실험 결과로 좀 더 정교한 수관절 재활 훈련 장치나 로봇 등을 제작하는데 응용할 수 있다.

Keywords

References

  1. Kizuka, T., Masuda, T., Kiryu, T., Sadoyama, T., 2006, Practical Usage of Surface Electromyogram, Tokyo Denki University Press.
  2. Lee, J. H., Lee, Y. S., Lee, J. O. and Park, S. H., 2007, "Biomechanical Gait Analysis and Simulation on the Normal, Cavus and Flat Foot with Orthotics," Journal of KSME(A), Vol. 31, No. 11, pp. 1115-1123. https://doi.org/10.3795/KSME-A.2007.31.11.1115
  3. Lee, C. S. and Gonzalez, R. V., 2008, "Fuzzy Logic versus a PID Controller for Position Control of a Muscle-like Actuated Arm," Journal of Mechanical Science and Technology, Vol. 22, No. 8, pp. 1475-1482. https://doi.org/10.1007/s12206-008-0424-7
  4. An, K. N., Kwak, B. M., Chao, E. Y. and Morrey, B. F., 1984, "Determination of Muscle and Joint Forces: A New Technique to Solve the Indeterminate Problem," Journal of Biomechanical Engineering, ASME, Vol. 106, pp. 364-367. https://doi.org/10.1115/1.3138507
  5. Nagata, K. and Magatani, K., 2003, "Development of the Assist System to Operate a Computer for the Disabled," Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 1666-1669.
  6. Choi, C. M., Han, H. N., Ha, S. D. and Kim, J., 2007, "Development of an EMG-Based Computer Interface for the Physically Handicapped," Human-Computer Interface Conference, pp. 222-227.
  7. Neuman, D. A., 2005, Kinesiology of the Musculoskeletal System, Mosby, Chapter 7.
  8. Mitsubishi, 2008, Mitsubishi Hysteresis Clutch and Brake Manual, pp. 11-12.

Cited by

  1. Reaction of Ankle Muscles by Functional Electrical Stimulation vol.22, pp.1, 2012, https://doi.org/10.5050/KSNVE.2012.22.1.015
  2. Functional Electrical Stimulation for Rehabilitation of a Shoulder Joint vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-B.2013.37.12.1121
  3. Kinematic Characteristics of Walking-Assistance Robot vol.35, pp.5, 2011, https://doi.org/10.3795/KSME-A.2011.35.5.503