DOI QR코드

DOI QR Code

Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature

니켈기 초내열합금 IN738LC의 고온 저주기피로 거동

  • Received : 2010.05.12
  • Accepted : 2010.08.03
  • Published : 2010.10.01

Abstract

For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method.

니켈기 초내열합금은 고온 강도를 지속적으로 증가시키며 현재 비행기 엔진, 선박 엔진 및 발전용 가스터빈 고온 부품 등을 만드는 가장 중요한 소재로 오래전부터 사용되어져 왔다. 이러한 부품의 수명을 연장하기 위해서는 사용 환경과 유사한 조건에서의 피로수명 예측이 매우 중요하다. 따라서 본 연구에서는 가스터빈 블레이드 소재인 니켈기 초내열합금 IN738LC에 대하여 실제운전환경과 유사한 조건을 설정하여 다양한 변형률 범위와 온도에서 시험을 수행하였다. 저주기 피로수명을 예측하기 위하여 변형률 에너지 밀도와 파단 사이클과의 관계를 사용하였다. 수명의 예측은 시험결과를 토대로 변형률 에너지법과 Coffin-Manson법에 의하여 예측을 하였다.

Keywords

References

  1. Tomkins, B., 1981, Creep and Fatigue in High Temperature Alloys, Bresers J. (Ed.), Applied Science Publication.
  2. Runkle, J.C. and Pellous, R. M., 1978, Fatigue Mechanisms, ASTM STP 675.
  3. Polak, J., 1991, Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier.
  4. Bannantine, J.A., Comer, J.J. and Handrock, J.L., 1990, Fundamentals of Metal Fatigue Analysis, Prentice Hall.
  5. Feltner. C.E. and Morrow. J. D., 1961, "Micro Plastic Strain Hysteresis Energy as a criterion for Fatigue Fracture," Journal of Basic Engineering, Vol. 1, No. 1, pp. 15-22.
  6. Ellyin, F. and Kujawski, D., 1984, "Plastic strain Energy in Fatigue Failure," Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 106, No. 4, pp. 342-347. https://doi.org/10.1115/1.3264362
  7. Lefebvre, D. and Ellyin, F., 1984, "Cyclic Response and Inelastic Strain Energy in Low Cycle Fatigue," International Journal of Fatigue, Vol. 6, No. 1, pp. 9-15. https://doi.org/10.1016/0142-1123(84)90003-3
  8. Ellyin, F., 1985, "Effect of Tensile Mean Strain on Plastic Strain Energy and Cyclic Response," Journal of Engineering Materials and Technology, Vol. 107, pp. 119-125. https://doi.org/10.1115/1.3225786
  9. Halford, G. R., 1966, "The Energy Required for Fatigue," Jorunal of Materials, Vol.1, No. 1, pp. 3-18.
  10. Morrow, J. D., 1965, "Cyclic Plasticity Strain Energy and Fatigue of Metals," Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, pp. 45-87.
  11. Ellyin, F. and Kujawski, D., 1986, "The Energy-Based Fatigue Failure Criterion," Microstructure and Mechanical Behaviour of Materials, Vol. 2, pp. 541-600.
  12. Golos, K. and Ellyin, F., 1988, "A Total Strain Energy Density Theory for Cumulative Fatigue Damage," Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 110, pp. 36-41. https://doi.org/10.1115/1.3265565

Cited by

  1. A study of the LCF characteristics of the Ni-based superalloy IN738LC vol.16, pp.4, 2015, https://doi.org/10.1007/s12541-015-0102-5
  2. Thermo mechanical fatigue life prediction of Ni-based superalloy IN738LC vol.18, pp.4, 2017, https://doi.org/10.1007/s12541-017-0067-7
  3. Life Prediction of IN738LC Considering Creep Damage under Low Cycle Fatigue vol.5, pp.2, 2018, https://doi.org/10.1007/s40684-018-0033-6