Comparison of Agronomic Characteristics and Activity Variation of ADP-Glucose Pyrophosphorylase at Different Growth Stages in Soybean Cultivars

콩 품종의 생육특성 및 생육단계별 ADP-Glucose Pyrophosphorylase의 활성변화 비교

  • Kim, Young-Jin (Div. of Winter Cereal and Forage Crop Research, National Institute of Crop Science, RDA) ;
  • Lee, Si-Myeong (Div. of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Cho, Sang-Kyun (Div. of Winter Cereal and Forage Crop Research, National Institute of Crop Science, RDA) ;
  • Oh, Young-Jin (Div. of Winter Cereal and Forage Crop Research, National Institute of Crop Science, RDA) ;
  • Kim, Hag-Sin (Div. of Winter Cereal and Forage Crop Research, National Institute of Crop Science, RDA)
  • 김영진 (국립식량과학원 벼맥류부) ;
  • 이시명 (국립농업과학원 농업생명자원부) ;
  • 조상균 (국립식량과학원 벼맥류부) ;
  • 오영진 (국립식량과학원 벼맥류부) ;
  • 김학신 (국립식량과학원 벼맥류부)
  • Received : 2010.03.04
  • Published : 2010.06.30

Abstract

The relationship between ADP-glucose pyrophosphorylase (AGP) activity and the characteristics of related pod setting in developing seed of soybean cv. Pungsannamulkong, Iksannamulkong, Geumjeongkong #1 and Danpaheuk was studied. AGP activity during the accumulate of the majority of dry matter in all cultivars suggested that this enzyme might be associated with this process. At the Vn and R1 stages, AGP activity of full-grown leaves of Pungsannamulkong, Iksannamulkong, Geumjeongkong #1 was the highest and then decreased progressively. However AGP activity of Danpaheuk was the lowest and also had lower seed weight. So regulation of matter accumulation in developing soybean seeds may also depend on AGP activity. AGP capacities as expressed by AGP activity seem to have a good predicting value for the dry matter of leaf and seed at R1 to R5 stages in our series of R3 stage genotypes. Western blots probed with antibody specific to the subunit of potato AGP revealed a single 60KD immunoreactive band that changed in intensity during the growth cycle in association with changes in total AGP activity.

콩의 생산성을 높이는데 중요한 역할을 하는 효소의 활성변화와 종실 수량과의 관련성을 탐색하기 위해 등숙관련효소인 ADP-glucose pyrophosphorylase(AGP)의 활성변화를 콩 품종별로 등숙기간에 따라 조사한 결과를 요약하면 다음과 같다. 1. 풍산나물콩은 협수 및 잎수가 131개 및 102개로 가장 많았으며, 100립중은 10.4g으로 가장 낮았으나 수량은 275kg/10a으로 가장 높아 물질생산 및 건물축적 효율이 우수한 것으로 나타났는데, 개화시기$(R_1,\;R_2)$에 AGP의 활성도 가장 높은 경향이었다. 2. 품종별 $CO_2$ 동화량은 풍산나물콩이 $20.96{\mu}mol\;m^{-2}s^{-1}$로 가장 많았으며 검정콩1호는 $12.54{\mu}mol\;m^{-2}s^{-1}$로 가장 적었다. 3. 단파흑은 개체당 잎면적이 $3,968cm^2$로 가장 많고 100립중도 30.5g으로 가장 높은 반면 수량은 149kg/10a으로 가장 낮아 건물축적 효율이 가장 낮았으며, 생육단계별 AGP활성도 가장 낮은 수치를 나타냈다. 4. AGP의 small subunit은 60KD의 single band를 나타냈는데 개화기 이후 AGP의 활성변화와 일치하는 경향을 보였다.

Keywords

References

  1. 김동헌, 이시명, 황영수. 1998. 식물의 전분합성 관련효소 특성 구명 연구. 농업과학원 시험연구사업보고서(생물자원부편) pp. 488-495.
  2. 김영진, 이강세, 천상욱, 오영진, 김경호, 최재성, 이문희. 2003. 엽형에 따른 콩 품종의 광합성 능력과 잎의 해부형태 비교. 한국작물학회지 48(3):248-251.
  3. 山口淳一, 河內和, 田中明. 1975. 作物 生長效率に 關する 硏究 (第5報). 日本土肥雜誌 46(4):120-125.
  4. Choi SB, Kim KH, Kavakli IH, Lee SK and Okita TW. 2001. Transcriptional expression characteristics and subcellular localization of ADP-glucose pyrophosphorylase in the oil plant Perilla frutescens. Plant and Cell Physiol. 42(2):146-153 https://doi.org/10.1093/pcp/pce019
  5. Crafts-Brandner SJ. 1992. Phosphorus nutrition influence on starch and sucrose accumulation, and activities of ADPglucose pyrophosphorylase and sucrose-phosphate synthase during the grain filling period in soybean. Plant Physiol. 98:1133-1138. https://doi.org/10.1104/pp.98.3.1133
  6. Huber SC. 1983. Role of sucrose-phosphate synthase in partitioning of carbon in leaves. Plant Physiol. 71:818-821. https://doi.org/10.1104/pp.71.4.818
  7. Keeling PL, Wood JR, Tyson RH and Bridges IG. 1988. Starch biosynthesis in developing wheat grain. Plant Physiol. 87: 311-319. https://doi.org/10.1104/pp.87.2.311
  8. Kerr PS, Huber SC, and Israel DW. 1984. Effect of source on soybean leaf sucrose phosphate synthase starch formation and whole plant growth. Plant Physiol. 75:483-488. https://doi.org/10.1104/pp.75.2.483
  9. Mian, M. A. R., R. Wells, T. E. Carter Jr., D. A. Ashley, and H. R. Boerma. 1998. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Theo. and Appl. Gen. 96:354-360. https://doi.org/10.1007/s001220050748
  10. Muller-Rober B., U. L. Cognata, U. Sonnewald and L. Willmitzer. 1994. A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants. The Plant Cell 6(5):601-612. https://doi.org/10.1105/tpc.6.5.601
  11. Park, SW. and Chung, WI. 1998. Molecular cloning and organspecific expression of three isoforms of tomato ADP-glucosepyrophosphorylase gene. Gene 206:215–221.
  12. Preiss J. 1991. Biology and molecular biology of starch synthesis and its regulation. Oxford Surv Plant Mol Cell Biol. 7:59-114.
  13. Shibles, R. J. Secor, and D. M. Ford. 1987. Carbon assimilation and metabolism. In JR Wilcox, ed, Soybeans: Improvement production, and uses. Amer. Soc. of Agron., Madison, WI, pp. 535-588.
  14. Sowokinos JR. 1976. Pyrophospholylase in Solanum tuberosum I. Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities associated with starch biosynthesis during tuberization, maturation and storage of potatoes. Plant Physiol. 57:63-68. https://doi.org/10.1104/pp.57.1.63
  15. Zhangying W., C. Xiaoping , W. Jianhua, L. Tingsong, L. Yan, Z. Li and W. Guoying. 2007. Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell, Tissue and Organ Culture 88(1):83-92. https://doi.org/10.1007/s11240-006-9173-4