DOI QR코드

DOI QR Code

Effects of antimony addition on growth of InGaN nano-structures by mixed-source HVPE

혼합소스 HVPE 방법에 의한 InGaN 나노구조의 성장에 있어서 Sb 첨가의 영향

  • Ok, Jin-Eun (Department of Applied Science, Korea Maritime University) ;
  • Jo, Dong-Wan (Department of Applied Science, Korea Maritime University) ;
  • Jeon, Hun-Soo (Department of Applied Science, Korea Maritime University) ;
  • Lee, Ah-Reum (Department of Applied Science, Korea Maritime University) ;
  • Lee, Gang-Suok (Department of Applied Science, Korea Maritime University) ;
  • Cho, Young-Ji (Department of Applied Science, Korea Maritime University) ;
  • Kim, Kyung-Hwa (Department of Applied Science, Korea Maritime University) ;
  • Chang, Ji-Ho (Department of Applied Science, Korea Maritime University) ;
  • Ahn, Hyung-Soo (Department of Applied Science, Korea Maritime University) ;
  • Yang, Min (Department of Applied Science, Korea Maritime University)
  • 옥진은 (한국해양대학교 응용과학과) ;
  • 조동완 (한국해양대학교 응용과학과) ;
  • 전헌수 (한국해양대학교 응용과학과) ;
  • 이아름 (한국해양대학교 응용과학과) ;
  • 이강석 (한국해양대학교 응용과학과) ;
  • 조영지 (한국해양대학교 응용과학과) ;
  • 김경화 (한국해양대학교 응용과학과) ;
  • 장지호 (한국해양대학교 응용과학과) ;
  • 안형수 (한국해양대학교 응용과학과) ;
  • 양민 (한국해양대학교 응용과학과)
  • Received : 2010.05.28
  • Accepted : 2010.06.11
  • Published : 2010.06.30

Abstract

We report on the growth and characteristics of the structural and optical properties of InGaN nano-structures doped with antimony (Sb) as a catalyst. The use of catalyst has been explored to modify the growth and defect generation during strained layer heteroepitaxial growth. We performed the growth of the InGaN nano-structures on c-sapphire substrates using mixed-source hydride vapor phase epitaxy (HVPE). The characteristic of samples was measured by scanning electron microscope (SEM) and photoluminescence (PL). The aligning direction of c-axis of the InGaN nano-structures was changed from vertical to parallel or inclined to the surface of substrates when the Sb was added as a catalyst. The indium composition was estimated about 3.2% in both cases of with or without the addition of Sb in the InxGal-xN structures. From the results of InGaN nano-structures formed with the addition of Sb, we can expect the performance of optical devices would be more improved by reduced piezo-electric field if we use the InGaN nano-structures of which c-axes are aligned parallel to the substrates as an active layer.

본 논문에서는 Sb를 촉매제로 이용하는 경우의 InGaN 나노구조의 성장과 구조적 특징 및 광학적 특성에 대해서 연구하였다. 결정성장에 있어서 촉매제의 사용은 성장 모드의 변화와 결정 결함의 감소 등을 위한 목적으로 많이 사용되어왔다. 본 연구에서는 혼합소스 HVPE(hydride vapor phase epitaxy) 사용하여 (0001) 사파이어 기판 위에 InGaN 나노구조를 성장하였고, 구조적 및 광학적 특성은 scanning electron microscope(SEM)과 photoluminescence(PL)를 통해 평가하였다. Sb이 첨가되지 않은 경우에는 InGaN 나노구조가 c-축 방향으로 정렬되는 경향을 보이지만 Sb이 첨가된 경우에는 InGaN 나노구조의 c-축 방향이 기판에 대해 평행하거나 경사진 방향으로 정렬되고 있는 것을 관찰할 수 있었다. In의 조성은 Sb 의 첨가 여부에 관계없이 약 3.2% 정도로 계산되었다. 이러한 결과들로부터 측면 배향된 나노입자를 활성층으로 하는 광소자에 적용할 경우 압전 전계를 완화할 수 있기 때문에 광소자의 발광 성능을 향상시킬 수 있을 것으로 기대된다.

Keywords

References

  1. S. Nakamura, S. Pearton and G. Fasol, "The Blue Laser Diode: the Complete Story" (Springer, Berlin, 2000) 237.
  2. K.P. O'Donnell, R.W. Martin and P.G. Middleton, Phys. Rev. Lett. 82 (1999) 237. https://doi.org/10.1103/PhysRevLett.82.237
  3. J.I. Pankove and T.D. Moustakes, Gallium Nitride II:semiconductor and semimetals (Academic Press, New York, 1999) 57.
  4. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, "One-dimensional nanostructures: Synthesis, characterization, and applications", Adv. Mater. 15 (2003) 353. https://doi.org/10.1002/adma.200390087
  5. K. Kornitzer, T. Ebner, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory and S. Porowski, "Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films", Phys. Rev. B 60 (1999) 1471. https://doi.org/10.1103/PhysRevB.60.1471
  6. W.W. Chow and H.C. Schneider, "Theory of laser gain in InGaN quantum dots", Appl. Phys. Lett. 81 (2002) 2566. https://doi.org/10.1063/1.1509476
  7. R. Langer, J. Simon, W. Ortiz, N.T. Pelekanos, A. Barski, R. Andre and M. Godlewski, "Giant electric fields in unstrained GaN single quantum wells", Appl. Phys. Lett. 74 (1999) 3827. https://doi.org/10.1063/1.124193
  8. M.D. Craven, P. Waltereit, J.S. Speck and S.P. Den-baars, "Well-width dependence of photoluminescence emission from a-plane GaN/AlGaN multipled quantum wells", Appl. Phys. Lett. 84 (2004) 496. https://doi.org/10.1063/1.1638884
  9. L. Zhou, R. Chandrasekaran, T.D. Moustakas and D.J. Smith, "Structural characterization of non-polar (11-20) and semi-polar (112-6) GaN films grown on r-plane sapphire", J. Cryst. Growth 310 (2008) 2981. https://doi.org/10.1016/j.jcrysgro.2008.03.013
  10. Z.H. Wu, A.M. Fischer, F.A. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers and M. Kneissl "Structural and optical properties of nonpolar GaN thin films", Appl. Phys. Lett. 92 (2008) 171904. https://doi.org/10.1063/1.2918834
  11. L. Zhang, H.F. Tang, J. Schieke, M. Mavrikakis and T.F. Kuech, "The addition of Sb as a surfactant to GaN growth by metal organic vapor phase epitaxy", J. Appl. Phys. 92 (2002) 2304. https://doi.org/10.1063/1.1495891
  12. C.W. Pei, B. Turk, J.B. Heroux and W.I. Wang, "GaN grown by molecular beam epitaxy with antimony as surfactant", J. Vac. Sci. Technol. B 19 (2001) 1426. https://doi.org/10.1116/1.1374627
  13. E. Kaxiras, "Atomic structure of catalyst monolayers and its role in epitaxial growth Mater", Sci. Eng. B 30 (1995) 175. https://doi.org/10.1016/0921-5107(94)09012-2
  14. W. Walukiewicz, S.X. Li, J. Wu, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu and William J. Schaff, "Optical properties and electronic structure of InN and In-rich group III-nitride alloys", J. Cryst. Growth 269 (2004) 119. https://doi.org/10.1016/j.jcrysgro.2004.05.041