DOI QR코드

DOI QR Code

Fabrication of various carbon nanostructures by using different catalysts

촉매에 따른 다양한 탄소나노구조체 합성

  • Choi, Kang-Ho (Materials Processing Devision, Korea Institute of Materials Science) ;
  • Yoo, In-Joon (Materials Processing Devision, Korea Institute of Materials Science) ;
  • Lee, Hee-Soo (Pusan National Univ.) ;
  • Lee, Kyu-Hwan (Materials Processing Devision, Korea Institute of Materials Science) ;
  • Lim, Dong-Chan (Materials Processing Devision, Korea Institute of Materials Science)
  • 최강호 (한국기계연구원부설 재료연구소 융합공정본부 전기화학연구그룹) ;
  • 유인준 (한국기계연구원부설 재료연구소 융합공정본부 전기화학연구그룹) ;
  • 이희수 (부산대학교 재료공학부) ;
  • 이규환 (한국기계연구원부설 재료연구소 융합공정본부 전기화학연구그룹) ;
  • 임동찬 (한국기계연구원부설 재료연구소 융합공정본부 전기화학연구그룹)
  • Received : 2010.04.29
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

Carbon fiber has many potential applications in a wide array of fields of solar cell, fuel cell, batteries, and polymer matrix composites due to an exceptional mechanical properties and chemical stability. In this study, the effects of catalysts on the property of carbon nanostructures grown on the carbon fiber were systematically investigated. The surface treatment of carbon fiber and catalysts synthesis for carbon nanostructures growth were carried out by one-pot ELP method and thermal CVD, respectively. The surface morphology and crystal structure of carbon nanostructures were examined using a field emission scanning electron microscope and transmission electron microscope. Depending on the type of catalysts and the molar ratio, various types of carbon nanostructures like carbon nanotube, carbon nanofilament, carbon nanospring and etc. were synthesized on the surface of carbon fibers surface.

탄소 섬유소재는 가벼우면서고 강건한 특성과 화학적 안정성 등으로 인해 항공기, 자동차, 레저, 우주항공, 풍력, 연료전지, 방위 산업 등의 분야를 비롯하여 최근에는 다양한 산업용 복합재료 및 보강용 분야에서 많이 사용되고 있다. 본 연구에서는 탄소섬유의 기능성 향상 및 다양한 응용 분야 확대를 위하여 물리적, 화학적 특성이 우수한 탄소나노튜브와 같은 다양한 탄소나노구조체를 탄소섬유상에 하이브리드화 하는 연구를 진행하였다. ELP(Electroless plating)법을 이용하여 탄소섬유 표면처리 및 촉매 입자 형성을 동시에 진행하였으며, Thermal CVD법을 이용하여 탄소나노구조체를 형성한 결과, 탄소섬유상 Pd/Ni 복합 촉매의 비율에 따라서 탄소나노튜브, 탄소나노필라멘트 등 다양한 형태의 탄소섬유상 탄소나노구조체가 형성되는 것을 알 수 있었다. Pd촉매의 비율이 높을 수록 다중벽 탄소나노튜브(Multiwall carbon naotube)의 생성 비율이 높아지고, Ni촉매의 비율이 상대적으로 증가할 수록 탄소나노필라멘트(Carbon nanofilament)의 생성 비율이 높아짐을 알 수 있었다.

Keywords

References

  1. D.D. Edie, "The effect of processing on the structure and properties of carbon fibers", Carbon 36 (1998) 345. https://doi.org/10.1016/S0008-6223(97)00185-1
  2. S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  3. H. Takikawa, M. Yatsuki, T. Sakakibara and S. Itoh, "Carbon nanotubes in cathodic vacuum arc discharge", Journal of Physics D: Applied Physics 33 (2000) 826. https://doi.org/10.1088/0022-3727/33/7/311
  4. Z.P. Huang, J.W. Wu, Z.F. Ren, J.H. Wang, M.P. Siegal and P.N. Provencio, "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition", Applied Physics Letters 73 (1998) 3845. https://doi.org/10.1063/1.122912
  5. A.A. Puretzky, D.B. Geohegan, X. Fan and S.J. Pennycook, "Dynamics of single-wall carbon nanotube synthesis by laser vaporization", Applied Physics A: Materials Science and Processing 70 (2000) 153. https://doi.org/10.1007/s003390050027
  6. Q. Zhang, S.F. Yoon, J. Ahn, B. Gan, Rusli, M.B. Yu, L.K. Cheah and X. Shi, "Field emission from carbon nanotubes produced using microwave plasma assisted CVD", International Journal of Modern Physics B 14 (2000) 289. https://doi.org/10.1142/S0217979200000285
  7. A.C. Dupuis, "The catalyst in the CCVD of carbon nanotubes- a review", Progress in Materials Science 50 (2005) 929. https://doi.org/10.1016/j.pmatsci.2005.04.003
  8. S.I. Yang, "Structural study using ultrahigh resolution carbon nanotube AFM probe tips", Journal of the Korean Chemical Society 49 (2005) 517. https://doi.org/10.5012/jkcs.2005.49.6.517
  9. C.E. Baddour, F. Fadlallah, D. Nasuhoglu, R. Mitra, L. Vandsburger and J.-L. Meunier, "A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an extermal catalyst", Carbon 47 (2009) 313. https://doi.org/10.1016/j.carbon.2008.10.038
  10. Z. Zhang, M. Shakerzadeh, B. Tay, X. Li, C. Tan, L. Lin, P. Guo, T. Feng and Z. Sun, "Fabrication of aligned carbon nanotubes on Cu catalyst by dc plasma-enhanced catalytic decomposition", Applied Surface Science 255 (2009) 6404. https://doi.org/10.1016/j.apsusc.2009.02.025
  11. A. AgIral, L. Lefferts and J.G.E. Gardeniers, "In situ CVD of carbon nanofibers in a microreactor", Catalysis Today 150 (2010) 128. https://doi.org/10.1016/j.cattod.2009.04.023
  12. N. Zhao, Q. Cui, C. He, C. Shi, J. Li, H. Li and X. Du, "Synthesis of carbon nanostructures with different morphologies by CVD of methane", Materials Science and Engineering A 460-461 (2007) 255. https://doi.org/10.1016/j.msea.2007.01.051
  13. R.L. Vander Wal and L.J. Hall, "Carbon nanotube synthesis upon stainless steel meshes", Carbon 41 (2003) 659. https://doi.org/10.1016/S0008-6223(02)00369-X
  14. V. Mart Lnez-Hansen, N. Latorre, C. Royo, E. Romeo, E. Garc La-Bordeje and A. Monzo, "Development of aligned carbon nanotubes layers over stainless steel mesh monoliths", Catalysis Today 147 (2009) 71. https://doi.org/10.1016/j.cattod.2009.07.010
  15. Y. Fernandez, B. Fidalgo, A. Dominguez, A. Arenillas and J.A. Menendez, "Carbon nanofilament synthesis by the decomposition of $CH_{4}/CO_{2}$ under microwave heating", Carbon 45 (2007) 1696. https://doi.org/10.1016/j.carbon.2007.04.033
  16. S.K. Pillai, L. Matlhoko, C. Arendse, S. Sinha Ray and M. Moodley, "The use of calcination in exposing the entrapped Fe particles from multi-walled carbon nanotubes grown by chemical vapor deposition", Applied Physics A: Materials Science and Processing 94 (2009) 585. https://doi.org/10.1007/s00339-008-4899-y
  17. M.-F. Fiawoo, A.-M. Bonnot, V. Jourdain, T. Michel, M. Picher, R. Arenal, J. Thibault-Pénisson and A. Loiseau, "Substrate preparation techniques for direct investigation by TEM of single wall carbon nanotubes grown by chemical vapor deposition", Surface Science 603 (2009) 1115. https://doi.org/10.1016/j.susc.2009.02.029
  18. M. Meyyappan, L. Delzeit, A. Cassell and D. Hash, "Carbon nanotube growth by PECVD: a review", Plasma Sources Science and Technology 12 (2003) 205. https://doi.org/10.1088/0963-0252/12/2/312
  19. A.G. Nasibulin, P.V. Pikhitsa, P. Queipo, M. Choi and E.I. Kauppinen, "Investigations of mechanism of carbon nanotube growth", Physica Status Solidi (B) Basic Research 13 (2006) 3095.
  20. D. Takagi, Y. Kobayashi and Y. Homma, "Carbon nano-tube growth from diamond", Journal of the America Chemical Society 131 (2009) 6922. https://doi.org/10.1021/ja901295j
  21. Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai and C.H. Tsai, "On the kinetic of carbon nanotube growth by thermal CVD method", Diamond & Related Materials 13 (2004) 2140. https://doi.org/10.1016/j.diamond.2004.03.007
  22. N.K. Chang and S.H. Chang, "High-yield synthesis of carbon nanocoils on stainless steel", Carbon 46 (2008) 1091. https://doi.org/10.1016/j.carbon.2008.03.010
  23. T. Hashishin and J. Tamaki, "Au-Pd catalyzed growth of carbon nanofibers mat", Materials Chemistry and Physics 111 (2008) 54. https://doi.org/10.1016/j.matchemphys.2008.03.016
  24. W. Wunderlich, "Growth model for plasma-CVD growth of carbon nano-tubes on Ni-sheets", Diamond & Related Materials 16 (2007) 369. https://doi.org/10.1016/j.diamond.2006.07.005
  25. T. Hirata, N. Sakate, G.H. Jeong, T. Kato, R. Hatakeyama, K. Motomiya and L. Tohji, "Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbon nanotube growth", Applied Physics Letters 83 (2003) 1119. https://doi.org/10.1063/1.1601303
  26. A.M. Pantano, D. Parks and M.C. Boyce, "Mechanics of deformation single- and multi-wall carbon nano-tubes", Journal of the Mechanics and Physcis of Solids 52 (2004) 789. https://doi.org/10.1016/j.jmps.2003.08.004
  27. P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou and C. Vix-Guterl, "A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes", Carbon 44 (2006) 3005. https://doi.org/10.1016/j.carbon.2006.05.021
  28. Z. Zhang, D.H.C. Chua, Y. Gao, Y. Zhang, Z. Tang, B.K. Tay, T. Feng, Z. Sun and Y. Chen, "Field-emission properties of carbon nanotubes grown using Cu-Cr catalysts", Journal of Vacuum Science and Technology 27 (2009) 41. https://doi.org/10.1116/1.3039691
  29. B. Gan, J. Ahn, Q. Zhang, Rusli, S.F. Yoon and J. Yu, "Y-junction carbon nanotubes grown by in situ evaporated copper catalyst", Chemical and Physics Letters 333 (2001) 23. https://doi.org/10.1016/S0009-2614(00)01336-1
  30. Y. Li, B. Zhang, X. Xie, J. Liu, Y. Xu and W. Shen, "Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers", Journal of Catalysis 238 (2006) 412. https://doi.org/10.1016/j.jcat.2005.12.027
  31. S. Takenaka, S. Kobayashi, H. Ogihara and K. Otsuka, "$Ni/SiO_{2}$ catalyst effective for methane decomposition into hydrogen and carbon nanofiber", Journal of Catalysis 217 (2003) 79.
  32. K. Otsuka, H. Ogihara and S. Takenaka, "Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons", Carbon 41 (2003) 223. https://doi.org/10.1016/S0008-6223(02)00308-1
  33. S.P. Sharma and S.C. Lakkad, "Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique", Surface & Coatings Technology 203 (2009) 1329. https://doi.org/10.1016/j.surfcoat.2008.10.043
  34. J. Li, C. Papadopoulos and J. Xu, "Nanoelectronics: Growing Y-junction carbon nanotubes", Nature 402 (1999) 253.
  35. J.-M. Ting and R.-M. Liu, "Carbon nanowires with new microstructures", Carbon 41 (2003) 625.
  36. J.Y. Kim, Y. Jo, S.-K. Kook, S. Lee and H.C. Choi, "Synthesis of carbon nanotube supported Pd catalysts and evaluation of their catalytic properties for C-C bond forming reactions", Journal of Molecular Catalysis A 323 (2010) 28. https://doi.org/10.1016/j.molcata.2010.02.032

Cited by

  1. gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide vol.22, pp.2, 2012, https://doi.org/10.6111/JKCGCT.2012.22.2.084
  2. The effect of laser energy on the preparation of iron oxide by a pulsed laser ablation in ethanol vol.22, pp.3, 2012, https://doi.org/10.6111/JKCGCT.2012.22.3.134
  3. Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process vol.23, pp.1, 2013, https://doi.org/10.6111/JKCGCT.2013.23.1.027