DOI QR코드

DOI QR Code

Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry

  • Jang, Yu-Mi (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University) ;
  • Oh, Jun-Sik (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University) ;
  • Park, Chang-Joon (Korea Research Institute of Standards and Science) ;
  • Yang, Sang-Sik (Division of Electrical & Computer Engineering, Ajou University) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University)
  • Received : 2010.06.27
  • Accepted : 2010.08.09
  • Published : 2010.10.20

Abstract

In the present study, we constructed a membrane inlet assembly for selective permeation of volatile airborne organic compounds for subsequent analysis by time-of-flight mass spectrometry. The time-dependent diffusion of analytes through a $75\;{\mu}m$ thick polydimethylsiloxane membrane was measured by monitoring the ion signal after a step change in the sample concentration. The results fit well to a non-steady-state permeation equation. The diffusion coefficient, response time, and sensitivity were determined experimentally for a range of polar (halogenated) and nonpolar (aromatic) compounds. We found that the response times for several volatile organic compounds were greatly influenced by the alkyl chain length as well as the size of the substituted halogen atoms. The detection limits for benzene, ethylbenzene, and 2-propanol were 0.2 ppm, 0.1 ppm, and 3.0 ppm by volume, respectively, with a linear dynamic range greater than three orders of magnitude. These results indicate that the membrane inlet/time-of-flight mass spectrometry technique will be useful for a wide range of applications, particularly for in situ environmental monitoring.

Keywords

References

  1. Mitra, S.; Kebbekus, B. Environmental Chemical Analysis; Chapman and Hall/CRC: Boca Raton, Florida, 1998.
  2. Melita, L.; Popescu, M. J. Membr. Sci. 2008, 312, 157.
  3. Hendren, Z. D.; Brant, J.; Wiesner, M. R. J. Membr. Sci. 2009, 331, 1. https://doi.org/10.1016/j.memsci.2008.11.038
  4. Jonsson, J. A. 2003, 57, S/317.
  5. Johnson, R. C.; Cooks, R. G.; Allen, T. M.; Cisper, M. E.; Hemberger, P. H. Mass Spectrom. Rev. 2000, 19, 1. https://doi.org/10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y
  6. Ketola, R. A.; Kotiaho, T.; Cisper, M. E.; Allen, T. M. J. Mass Spectrom. 2002, 37, 457. https://doi.org/10.1002/jms.327
  7. Viktorova, O. S.; Kogan, V. T.; Manninen, S. A.; Kotiaho, T.; Ketola, R. A.; Dubenskii, B. M.; Parinov, S. P.; Smirnov, O. V. J. Am. Soc. Mass Spectrom. 2004, 15, 823. https://doi.org/10.1016/j.jasms.2004.02.002
  8. Janes, D. W.; Durning, C. J.; van Pel, D. M.; Lynch, M. S.; Gill, C. G.; Krogh, E. T. J. Membr. Sci. 2008, 325, 81. https://doi.org/10.1016/j.memsci.2008.07.033
  9. Schlueter, M.; Gentz, T. J. Am. Soc. Mass Spectrom. 2008, 19, 1395. https://doi.org/10.1016/j.jasms.2008.07.021
  10. Frandsen, H.; Janfelt, C.; Lauritsen, F. R. Rapid Commun. Mass Spectrom. 2007, 21, 1574. https://doi.org/10.1002/rcm.3000
  11. Oser, H.; Coggiola, M. J.; Young, S. E.; Crosley, D. R.; Hafer, V.; Grist, G. Chemosphere 2007, 67, 1701. https://doi.org/10.1016/j.chemosphere.2006.05.117
  12. Mendes, M. A.; Eberlin, M. N. Analyst 2000, 125, 21. https://doi.org/10.1039/a908654d
  13. Sysoev, A. A.; Ketola, R. A.; Mattila, I.; Tarkiainen, V.; Kotiaho, T. Int. J. Mass Spectrom. 2001, 212, 205. https://doi.org/10.1016/S1387-3806(01)00440-7
  14. Maden, A. J.; Hayward, M. J. Anal. Chem. 1996, 68, 1805. https://doi.org/10.1021/ac9509216
  15. Allen, T. M.; Falconer, T. M.; Cisper, M. E.; Borgerding, A. J.; Wilkerson, C. W., Jr. Anal. Chem. 2001, 73, 4830. https://doi.org/10.1021/ac010315c
  16. Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Anal. Chem. 2003, 75, 3739. https://doi.org/10.1021/ac034043k
  17. Yoon, T. O.; Choi, C. M.; Kim, H. J.; Kim, N. J. Bull. Korean Chem. Soc. 2007, 28, 619. https://doi.org/10.5012/bkcs.2007.28.4.619
  18. Sinha, M. P.; Tomassian, A. D. Rev. Sci. Instrum. 1991, 62, 2618. https://doi.org/10.1063/1.1142240
  19. Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1955, 26, 1150. https://doi.org/10.1063/1.1715212
  20. White, A. J.; Blamire, M. G.; Corlett, C. A.; Griffiths, B. W.; Martin, D. M.; Spencer, S. B.; Mullock, S. J. Rev. Sci. Instrum. 1998, 69, 565. https://doi.org/10.1063/1.1148695
  21. Bae, Y. J.; Yoon, S. H.; Moon, J. H.; Kim, M. S. Bull. Korean Chem. Soc. 2010, 31, 92. https://doi.org/10.5012/bkcs.2010.31.01.092
  22. Song, K.; Cha, H.; Kim, D.; Min, K. Bull. Korean Chem. Soc. 2004, 25, 101. https://doi.org/10.5012/bkcs.2004.25.1.101
  23. Alexander, M. A.; Boscaini, E.; Lindinger, W.; Märk, T. D. Int. J. Mass Spectrom. 2003, 223-224, 763. https://doi.org/10.1016/S1387-3806(02)00964-8
  24. Hansen, K. F.; Gylling, S.; Lauritsen, F. R. Int. J. Mass Spectrom. 1996, 152, 143. https://doi.org/10.1016/0168-1176(95)04338-1
  25. Miranda, L. D.; Short, R. T.; van Amerom, F. H. W.; Bell, R. J.; Byrne, R. H. J. Membr. Sci. in press.
  26. Dongré, A. R.; Hayward, M. J. Anal. Chim. Acta 1996, 327, 1. https://doi.org/10.1016/0003-2670(96)00043-8
  27. Kim, T.-K.; Jung, K.-H.; Yoo, S.-K.; Jung, K.-W. Bull. Korean Chem. Soc. 2005, 26, 303. https://doi.org/10.5012/bkcs.2005.26.2.303
  28. Jung, K.-W.; Choi, S. S.; Jung, K.-H. Rev. Sci. Instrum. 1991, 62, 2125. https://doi.org/10.1063/1.1142378
  29. NIST Standard Reference Database 69; November 1998 Release: NIST Chemistry WebBook.
  30. Watson, J. M.; Payne, P.A. J. Membr. Sci. 1990, 49, 171. https://doi.org/10.1016/S0376-7388(00)80786-3
  31. Tsai, G.-J.; Austin, G. D.; Syu, M. J.; Tsao, G. T.; Hayward, M. J.; Kotiaho, T.; Cooks, T. G. Anal. Chem. 1991, 63, 2460. https://doi.org/10.1021/ac00021a014
  32. Pasternak, R. A.; Schimscheimer, J. F.; Heller, J. J. Polym. Sci. 1970, 8, 467. https://doi.org/10.1002/pol.1970.110080702
  33. Overney, F. L.; Enke, C. G. J. Am. Soc. Mass Spectrom. 1996, 7, 93. https://doi.org/10.1016/1044-0305(95)00622-2
  34. Oh, K.-S.; Koo, Y.-M.; Jung, K.-W. Int. J. Mass Spectrom. 2006, 253, 65. https://doi.org/10.1016/j.ijms.2006.02.017
  35. Ketola, R. A.; Ojala, M.; Sorsa, H.; Kotiaho, T.; Kostiainen, R. Anal. Chim. Acta 1997, 349, 359. https://doi.org/10.1016/S0003-2670(97)00198-0
  36. Sigma Aldrich Technical Information Bulletin: Mineral adsorbents, filter agents, and drying agents, http://www.sigmaaldrich.com/chemistry/aldrich-chemistry/tech-bulletins/al-143.html
  37. Lauritsen, F. R.; Bohatka, S.; Degn, H. Rapid Commun. Mass Spectrom. 1990, 4, 401. https://doi.org/10.1002/rcm.1290041011
  38. Lide, D. R. CRC Handbook of Chemistry and Physics, 81th ed.; CRC Press: London, 2000.
  39. LaPack, M. A.; Tou, J. C.; Enke, C. G. Anal. Chem. 1990, 62, 1265. https://doi.org/10.1021/ac00212a013
  40. Boscaini, E.; Alexander, M. L.; Prazeller, P.; Märk, T. D. Int. J. Mass Spectrom. 2004, 239, 179. https://doi.org/10.1016/j.ijms.2004.08.011

Cited by

  1. Development and Optimization of an External-Membrane Introduction Photoionization Mass Spectrometer for the Fast Analysis of (Polycyclic)Aromatic Compounds in Environmental and Process Waters vol.91, pp.24, 2010, https://doi.org/10.1021/acs.analchem.9b03480