DOI QR코드

DOI QR Code

Simultaneous Measurement of External Refractive Index and Temperature by Using a Side-polished Fiber Bragg Grating with a Polymer Overlay

폴리머 코팅된 측면 연마 단주기 격자 기반 외부 굴절률 및 온도 동시 측정 센서 연구

  • Received : 2010.08.26
  • Accepted : 2010.10.01
  • Published : 2010.10.25

Abstract

A hybrid grating sensing device based on a side-polished fiber Bragg grating (FBG) with a polymer overlay is proposed for simultaneous measurement of external refractive index and temperature. The side-polished FBG, which is insensitive to ambient index change, is utilized for detecting temperature variation, and the polymer overlay is coated on the side-polished FBG for measurement of ambient index change. The temperature sensitivities of the side-polished FBG and the polymer overlay were measured to be 0.01 nm/$^{\circ}C$ and -0.58 nm/$^{\circ}C$, respectively, in a temperature range from $30^{\circ}C$ to $100^{\circ}C$. The ambient index sensitivities of the polymer overlay were measured to be 498.8 nm/RIU in an ambient index range from 1.33 to 1.39, 694.9 nm/RIU from 1.39 to 1.42, and 1312 nm/RIU from 1.42 to 1.44.

본 연구에서는 측면연마 된 광섬유 브래그 격자를 측면 연마하고 폴리머 상부층(overlay)를 형성시켜 외부 굴절률과 온도를 동시 측정할 수 있는 광섬유 센서 소자를 제안하였다. 외부굴절률 변화에 민감하지 않는 광섬유 브래그 격자를 이용하여 온도를 측정하고 격자를 측면 연마한 후 폴리머 코팅에 의해 소산장 결합을 유도하여 외부 굴절률 변화를 측정하게 된다. 측면 연마된 광섬유 브래그 격자의 온도 민감도는 0.01 nm/oC로 측정되었고 폴리머 상부층의 온도 민감도는 -0.58 nm/oC로 측정되었고 선형구간 별(1.33-1.39, 1.39-1.42, 1.42-1.44) 굴절률 민감도는 498.8 nm/RIU, 694.9 nm/RIU, 1312 nm/RIU로 측정되었다.

Keywords

References

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996). https://doi.org/10.1364/OL.21.000692
  2. Y. G. Han, X. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Opt. Lett. 31, 2839-2841 (2006). https://doi.org/10.1364/OL.31.002839
  3. J. N. Jang, S. Y. Kim, S. W. Kim, and M. S. Kim, “Temperature insensitive long-period fiber gratings,” Electron. Lett. 35, 2134-2136 (1999). https://doi.org/10.1049/el:19991426
  4. M. N. Ng, Z. H. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361-362 (2002). https://doi.org/10.1109/68.986813
  5. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996). https://doi.org/10.1109/68.531843
  6. M. Yang, J. Dai, X. Li, and J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108, 033102-4 (2010). https://doi.org/10.1063/1.3466981
  7. X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractiveindex and temperature measurement,” Opt. Lett. 26, 774-776 (2001). https://doi.org/10.1364/OL.26.000774
  8. D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299-304 (2004). https://doi.org/10.1117/1.1637903
  9. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44, 178-182 (2005). https://doi.org/10.1364/AO.44.000178
  10. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” IEEE J. Lightwave Technol. 16, 1606-1612 (1998). https://doi.org/10.1109/50.712243
  11. H. J. Kim, O. J. Kwon, and Y. G. Han, “Effect of an ambient index change on transmission characteristics of versatile D-shaped fibers depending on coupling strength of the evanescent field,” J. Korean Phys. Soc. 55, 1286-1289 (2009). https://doi.org/10.3938/jkps.55.1286