DOI QR코드

DOI QR Code

Endoscopic Imaging and Fabrication of Micro-endoscope Catheter in Time-domain Optical Coherence Tomography

시간영역 광 간섭 단층촬영 시스템의 소형 엔도스코프 제작 및 영상구현

  • Kim, Young-Kwan (College of Electronics and Information, Kyunghee University) ;
  • Lee, Sung-Hun (College of Electronics and Information, Kyunghee University) ;
  • Kim, Yong-Pyung (College of Electronics and Information, Kyunghee University)
  • 김영관 (경희대학교 전자정보대학) ;
  • 이성헌 (경희대학교 전자정보대학) ;
  • 김용평 (경희대학교 전자정보대학)
  • Received : 2010.07.26
  • Accepted : 2010.08.11
  • Published : 2010.10.25

Abstract

We fabricated and characterized a compact endoscopic catheter for optical coherence tomography. The optical delay line (ODL), composed of a cylindrical piezoelectric transducer (PZT) and an optical fiber, was operated with a 1 kHz sinusoidal driving wave in the time-domain. When the ODL was driven with a sinusoidal wave function, the axial scanning speed was 6 m/s and the axial acquisition rate was 2000 line/s at a depth of about 3 mm. Endoscopic OCT images of a human finger and earhole were successfully obtained with an image rate of ten frames per second.

광 간섭 단층촬영 시스템(OCT)을 위한 소형의 광섬유 도관형 주사장치인 엔도스코프(endoscope catheter)를 제작하였다. 깊이방향 주사장치인 원통형 압전소자(PZT)를 이용한 광경로 지연기는 정현파 1 kHz로 구동하여 시간영역에서 엔도스코프 OCT 영상을 구현하였다. 정현파로 구동한 광경로 지연기의 속도는 6 m/s 이고, 깊이방향 스캐닝의 데이터 획득은 3 mm 기준에서 초당 2000 라인이다. 제작한 엔도스코프로 사람의 손가락 및 귀에 대한 초당 10프레임의 OCT 영상을 성공적으로 획득하였다.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. S. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48-51 (1986).
  3. R. C. Youngquist, S. Carr, and D. E. N. Dvies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987). https://doi.org/10.1364/OL.12.000158
  4. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603-1606 (1987). https://doi.org/10.1364/AO.26.001603
  5. B. L. Danielson and C. D. Whittenberg, “Guide-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836-2842 (1987). https://doi.org/10.1364/AO.26.002836
  6. P. Klovekorn and J. Munch, “Variable optical delay line with diffraction-limited autoalignment,” Appl. Opt. 37, 1903-1904 (1998).
  7. K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, “Range extension in optical low coherence reflectometry achieved by using a pair of retroreflectors,” Electron. Lett. 31, 1565-1567 (1995). https://doi.org/10.1049/el:19951049
  8. C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: a new technique,” Opt. Lett. 22, 665-667 (1997). https://doi.org/10.1364/OL.22.000665
  9. X. Lui, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29, 80-82 (2004). https://doi.org/10.1364/OL.29.000080
  10. G. J. Tearney, B. E. Bouma, S. A. Boppat, and B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996). https://doi.org/10.1364/OL.21.001408
  11. D. G. Luke, R, McBride, and J. D. C. Jones, “Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders,” Opt. Lett. 20, 2550-2552 (1995). https://doi.org/10.1364/OL.20.002550
  12. V. Gelikonov, G. Gelikonov, N. Gladkova, V. Leonov, F. Feldchtein, A. Sergeev, and Y. Khanin, “Optical fiber interferometer and piezoelectric modulator,” U.S. Patent 5835642 (1998).
  13. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group- delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811-1813 (1997). https://doi.org/10.1364/OL.22.001811
  14. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, NY, USA, 2002), Chapter 4.
  15. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Select. Topics Quantum Electron 5, 1205-1215 (1999). https://doi.org/10.1109/2944.796348
  16. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543-545 (1996). https://doi.org/10.1364/OL.21.000543
  17. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). https://doi.org/10.1126/science.276.5321.2037
  18. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997). https://doi.org/10.1364/OE.1.000432
  19. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. V. Kuranov, A. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakova, L. B. Snopova, A. B. Terent’eva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetzova, “Endoscopic applications of optical coherence tomography,” Opt. Exp. 3, 257-270 (1998). https://doi.org/10.1364/OE.3.000257
  20. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for invivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2261-2263 (2004). https://doi.org/10.1364/OL.29.002261
  21. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236-1238 (2004). https://doi.org/10.1364/OL.29.001236
  22. A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope,” Jounal of Biomedical Opt. 11, 064003 (2006). https://doi.org/10.1117/1.2399454
  23. Y. K. Kim and Y. P. Kim, “High-speed time-domain optical coherence tomography with an imaging speed of ten frames per second with 2000 A-scan,” Opt. Eng. 49, 055601 (2010). https://doi.org/10.1117/1.3425659
  24. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode-fibers,” Opt. Lett. 3, 60-62 (1978). https://doi.org/10.1364/OL.3.000060
  25. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bendinginduced birefringence in single-mode fibers,” Opt. Lett. 5, 273-275 (1980). https://doi.org/10.1364/OL.5.000273
  26. Y. K. Kim, S. J. Park, and Y. P. Kim, “Compensations of polarization mode dispersion and thermal drift in optical coherence tomography with PZT optical delay lines,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 16, 547-552 (2005). https://doi.org/10.3807/KJOP.2005.16.6.547
  27. Y. K. Kim and Y. P. Kim, “Optical coherence tomography with sinusoidal-wave drive an optical delay line using piezoelectric stretcher,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 18, 274-279 (2007). https://doi.org/10.3807/HKH.2007.18.4.274
  28. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2954-2963 (2003).