DOI QR코드

DOI QR Code

Influence of crestal module design on marginal bone stress around dental implant

임플란트 경부 디자인이 변연골 응력에 미치는 영향

  • Lim, Jung-Yoel (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Cho, Jin-Hyun (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 임정열 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조진현 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조광헌 (경북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2010.06.30
  • Accepted : 2010.07.12
  • Published : 2010.07.30

Abstract

Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.

연구 목적: 본 연구에서는 임플란트 경부 디자인의 측면에서 미세나사, 치은 관통부의 곡면 디자인 적용 및 경부 역사면 부여효과를 직접 비교하여 정량적인 평가를 하고자 하였다. 연구 재료 및 방법: 직경 4.1 mm, 길이 10 mm 의 매립형 (submerged) 고정체 (Dentis Co., Daegu, Korea)를 기본 형상으로 설정하였다. 실험 모델로는 대조 모델의 경부 주위, 즉 치은 관통부/지대주 체결 방법에 변화를 준 다섯 가지 경우로 설정하였다 (실험 모델 I: 경부측 3 mm에 높이 0.15 mm, 피치 0.3 mm의 미세나사 (microthread)가 가공된 모델, 실험 모델II: 실험 모델 I 과 동일한 고정체이나, 매립형이 아니라 1-stage 형 (internal type) 디자인을 가진 미세나사가 가공된 모델, 실험 모델 III: 매식부 나사산은 대조 모델과 동일하나 1-stage 형 경부 디자인을 가지는 미세나사가 가공되지 않은 모델, 실험 모델 IV: 일체형 (one piece system) 임플란트로 치은 관통부에 3 mm 직경의 만곡 (concavity)형상을 갖는 모델, 실험 모델 V : 매식부 나사산 및 지대주는 대조 모델과 동일하나 고정체 platform 가장 자리에 높이 1 mm 의 역사면 (reverse bevel)을갖는모델). 유한요소해석을 위해 PC용으로 출시된 상용 프로그램인 NISA II/Display III (EMRC, Troy, MI, USA)를 사용하여, 축대칭으로 임플란트/악골 조합을 모델링하였다. 고정체 형상은 동일하나 경부 (및 치은 관통부) 디자인에 차이가 있는 여섯 종의 임플란트 (대조 모델 + 다섯 종 실험 모델)를 9 mm 폭경의 악골에 식립하고 임플란트 장축에 대해 30도의 각도를 갖는 100 N의 하중을 받는 조건으로 임플란트/골 복합체의 응력을 해석하였다. 결과:실험 모델 I과 실험 모델 IV에서 변연골 응력이 약간 낮았으나 실험 모델 II, III, 실험 모델 V는 대조 모델보다 변연골 응력이 높았다. 최대 절점응력이 기록된 임플란트로부터 0.2 mm 떨어진 위치에서의 응력은 실험 모델 III에서 21.11 MPa로 가장 높았고 실험 모델 II와 실험 모델 V는 비슷한 수준으로 각각 18.39 MPa, 17.88 MPa이었으며 실험 모델 I, IV는 대조모델의 15.09 MPa 보다 약간 낮은 14.78 MPa, 14.63 MPa 였다. 결론: 경부의 미세나사와 치은 관통부의 곡면 (concavity) 부여가 변연골의 응력집중 방지에 효과가 있는 것으로 분석되었다.

Keywords

References

  1. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 1984;42:705-11. https://doi.org/10.1016/0278-2391(84)90417-8
  2. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16. https://doi.org/10.1097/01.id.0000165033.34294.db
  3. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7. https://doi.org/10.1177/154405910308200316
  4. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24. https://doi.org/10.1902/jop.2000.71.9.1412
  5. Scarano A, Assenza B, Piattelli M, Iezzi G, Leghissa GC, Quaranta A, Tortora P, Piattelli A. A 16-year study of the microgap between 272 human titanium implants and their abutments. J Oral Implantol 2005;31:269-75. https://doi.org/10.1563/753.1
  6. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52. https://doi.org/10.1902/jop.2003.74.3.346
  7. Sanavi F, Weisgold AS, Rose LF. Biologic width and its relation to periodontal biotypes. J Esthet Dent 1998;10:157-63. https://doi.org/10.1111/j.1708-8240.1998.tb00351.x
  8. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9. https://doi.org/10.1902/jop.2000.71.4.546
  9. Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol 2004;75:572-7. https://doi.org/10.1902/jop.2004.75.4.572
  10. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73:322-33. https://doi.org/10.1902/jop.2002.73.3.322
  11. Prendergast PJ, Huiskes R. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. J Biomech Eng 1996;118:240-6. https://doi.org/10.1115/1.2795966
  12. Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 1994;64:175-88.
  13. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
  14. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94. https://doi.org/10.1111/j.1600-0501.2005.01132.x
  15. Hanggi MP, Hanggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. J Periodontol 2005;76:791-802. https://doi.org/10.1902/jop.2005.76.5.791
  16. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24:80-8. https://doi.org/10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
  17. Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11.
  18. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  19. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58. https://doi.org/10.1016/S0021-9290(03)00164-7
  20. Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8. https://doi.org/10.1111/j.1532-849X.1992.tb00422.x
  21. Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-202.
  22. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clin Oral Implants Res 2001;12:196-201. https://doi.org/10.1034/j.1600-0501.2001.012003196.x
  23. O'Brien GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7. https://doi.org/10.1563/0.699.1
  24. Akca K, Cehreli MC. A photoelastic and strain-gauge analysis of interface force transmission of internal-cone implants. Int J Periodontics Restorative Dent 2008;28:391-9.
  25. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 2004;92:523-30. https://doi.org/10.1016/j.prosdent.2004.07.024
  26. Kim YS, Kim CW, Jang KS, Lim YJ. Application of finite element analysis to evaluate platform switching. J Korean Acad Prosthodont 2005;43:727-35.
  27. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 2008;79:2166-72. https://doi.org/10.1902/jop.2008.080178
  28. Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405. https://doi.org/10.1034/j.1600-0501.1999.100506.x
  29. Chung JM, Jo KH, Lee CH, Yu WJ, Lee KB. Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant. J Korean Acad Prosthodont 2009;47:394-405. https://doi.org/10.4047/jkap.2009.47.4.394
  30. Li YF. Comparative and analysis study of peri-implant bone stress around Rescue implant and standard implant using finite element method. Masters thesis, Department of Dentistry, Graduate School, Kyungpook National University, Daegu, Korea, 2009.
  31. NISA II / DISPLAY III User Manual, Engineering Mechanics Research Corporation, 1998.
  32. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95.
  33. Misch CE. Contemporary Implant Dentistry. St. Louis: Mosby; 1999, p.337.

Cited by

  1. Three-dimensional finite element analysis for influence of marginal bone resorption on stress distribution in internal conical joint type implant fixture vol.50, pp.2, 2012, https://doi.org/10.4047/jkap.2012.50.2.99