Measurements on the Propagation Characteristics of the Hydrogen Flame by Ultra Fine Thermocouple

극세선 열전대에 의한 수소화염의 전파특성 측정

  • Kim, Dong-Joon (Research Institute of science for Safety and Sustainability, Natinal institute of Industrial Science and Technology)
  • 김동준 (산업안전종합연구소 안전과학연구부문)
  • Received : 2009.11.18
  • Accepted : 2010.06.07
  • Published : 2010.04.30

Abstract

Hydrogen is expected to become a new, clean source of energy for the next generation. Therefore, many studies have investigated the characteristics of the hydrogen flame. However, because the hydrogen flame has high temperature, the flame does not emit visible light, and the flame propagates at a high velocity, investigating its characteristics is difficult. In the present study, in order to simultaneously examine the flame temperature and flame propagation velocity of hydrogen/air mixtures, ultra fine thermocouples with diameters of 12.7, 25.4, and 50.8 ${\mu}m$ are utilized. The results show that it is possible to detect the arrival time of the flame. Due to the temperature compensation with the time constants of thermocouples, it is also possible to estimate the flame temperature.

최근 석유에너지의 대체에너지로 수소에 대해 사회적인 관심이 높아짐에 따라, 수소의 연소특성에 관한 연구가 많이 진행되고 있다. 하지만, 수소화염의 온도는 고온이며, 전파속도가 빠르며, 수소화염은 가시광을 거의 방출하지 않기 때문에 화염의 특성을 파악하는 것이 쉽지 않다. 본 연구에서는 직경12.7, 25.4, 50.8 ${\mu}m$인 3종류의 극세선 열전대를 이용하여 화염의 도달시간 및 온도를 동시에 측정하였다. 이론혼합농도에서의 화염도달시간을 검출한 결과, 빠른 수소화염의 전파속도를 정밀히 측정할 수 있음이 확인되었다. 또한, 열전대의 시정수를 고려함으로써, 화염온도를 추측하는 것이 가능함을 확인했다.

Keywords

References

  1. Daniel, A. and Jo, Y., "The hazard and risks of hydrogen", Journal. of Loss Prevention in the Process Industries, 20, 58-164, (2007)
  2. Saito, H. et al., "A field experiment of hydrogen-air deflagration", Science and technology of energetic materials, 65, 140-146, (2004)
  3. Wakabayashi, K. et al., "Experimental study on blast wave generated by deflagration of hydrogen-air mixture up to 200 $m^{3}$", Science and technology of energetic materials, 68, 25-28, (2007)
  4. Gaydon, A. G. and Wolfhard, H. G., "Flames - Their structure, radiation and temperature", 4th Edition, Chapmanand Hall, (1979)
  5. Koroll G., Kumar R., and Bowles E., "Burning velocities of hydrogen-air mixtures", Combustion and Flame, 94, 330-340, (1993)
  6. Kwon O. and Faeth G., "Flame/Stretch interactions of premixed hydrogen-fueled flames : Measurements and predictions", Combustion and Flame, 124, 590-610, (2000)
  7. Dahoe A., "Laminar burning velocities of hydrogen- air mixtures from closed vessel gas explosions", Journal of Loss Prevention in the Process Industries, 18, 152-166, (2005) https://doi.org/10.1016/j.jlp.2005.03.007
  8. Sarivastava D., Weinrotter M., Iskra K., Agarwal A., and Wintner E., "Characterisation of laser ignition in hydrogen-air mixtures in a combustion bomb", International Journal of Hydrogen Energy, 34, 2475-2482, (2009) https://doi.org/10.1016/j.ijhydene.2008.11.117
  9. Fujisawa N. and Nakashima K., "Simultaneous measurement of three-dimensional flame contour and velocity field for characterizing the flickering motion of a dilute hydrogen flame", Measurement Science and Technology, 18, 2103-2110, (2007) https://doi.org/10.1088/0957-0233/18/7/041
  10. Mogi, T., KIM, D. J., Shina, H., and Horiguchi, S., "Self-ignition and explosion during discharge of high-pressure hydrogen", Journal. of Loss Prevention in the Process Industries, 21, 199-204, (2008) https://doi.org/10.1016/j.jlp.2007.06.008
  11. Tagawa M. and Ohta Y., "Two-thermocouple probe for fluctuation temperature measurement in combustion - Rational estimation of mean and fluctuation time constants", Combustion and Flame, 109, 549-560, (1997) https://doi.org/10.1016/S0010-2180(97)00044-8
  12. Makeev, V. I., et al, "Combustions and detonation of hydrogen-air mixtures in free spaces", Combustion, explosion and shock waves, 19, 548-550, (1984)