Synthesis of Biodegradable Aliphatic Polyester with Amino Group in the Side Chain

곁사슬에 아미노기를 도입한 생분해성 지방족 폴리에스테르의 합성

  • Lee, Chan-Woo (Department of Innovative Industrial Technology, Hoseo University)
  • 이찬우 (호서대학교 첨단산업공학)
  • Received : 2010.04.28
  • Accepted : 2010.06.16
  • Published : 2010.07.25

Abstract

Aiphatic diester monomer, 3-[(benzyloxycarbonylamino)butyl]-1,4-dioxane-2,5-dione (BABD), was synthesized with the N-$\varepsilon$-benzyloxy-carbonyl-L-lysine as starting material. This monomer was synthesized to add the functionality to poly(lactic acid)s. BABD unit was successfully incorporated into the PLLA chain which was confirmed by $^1H$ NMR. The copolymer composition could be controlled by the feed ratios of monomer. The $M_n$ of this resultant polymer is expected to reach high molecular weight after the purification of monomer and optimization of polymerization time, though the polymer showed relatively low degree of polymerization ($M_n$=3300). The copolymer is expected to possess the enhanced hydrophilicity and the possibility of chemical modification on amino group.

Poly(lactic acid)계 고분자의 기능화를 목적으로 곁사슬에 아미노기를 도입한 지방족 폴리에스테르를 합성하 고자 하며, N-$\varepsilon$-benzyloxy-carbonyl-L-lysine을 출발물질로 한 디에스테르 단량체 3-[(benzyloxycarbonylamino) butyl]-1,4-dioxane-2,5-dione(BABD)를 합성하였다. BABD와 L-lactide와의 공중합의 결과, PLLA 사슬에 BABD단위가 도입된 것이 확인되었으며 공중합체의 조성은 단량체의 첨가량에 따라 제어가 가능함을 알 수 있었다. 얻어진 폴리머는 $M_n$=3300 정도로 낮은 중합도를 나타내었으나 단량체의 정제 및 중합시 간의 검토에 의해 고분자량체의 생성이 가능함을 확인하였다. 곁사슬에 아미노기를 도입함에 의해 얻어진 폴리머는 친수성의 향상, 아미노기에 대한 화학수식 등에 의해 기능성의 부여가 기대된다.

Keywords

Acknowledgement

Supported by : 호서대학교

References

  1. C. W. Lee and Y. Kimura, Bull. Chem. Soc. Jpn., 69, 1787 (1996). https://doi.org/10.1246/bcsj.69.1787
  2. C. W. Lee, S. I. Moon, and Y. K. Hong, Polymer(Korea). 25, 385 (2001).
  3. T. Kitao, Y. Kimura, T. Konishi, M. Araki, Y. Sugiyama, and S.Ohya, Koubunnshi Ronbunshu, 41, 717 (1984). https://doi.org/10.1295/koron.41.717
  4. C. W. Lee, H. Kim, K. H. Song, and S. I. Moon, Polymer(Korea), 26, 174 (2002).
  5. C. W. Lee and K. H. Song, Polymer(Korea), 26, 300 (2002).
  6. C. W. Lee and K. S. Bae, Polymer(Korea), 26, 582 (2002).
  7. C. W. Lee, Polymer(Korea), 31, 228 (2007).
  8. C. W. Lee, Polymer(Korea), 31, 233 (2007).
  9. Y. Furuhashi, H. Ito, T. Kikutani, T. Yamamoto, and M. Kimizu, Sen'i Gakkaishi, 53, 356 (1997). https://doi.org/10.2115/fiber.53.9_356
  10. K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita, Biochim. Biophys. Acta, 827, 63 (1985). https://doi.org/10.1016/0167-4838(85)90101-3
  11. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, and S. Masamune, Eur. J. Biochem., 124, 71 (1982). https://doi.org/10.1111/j.1432-1033.1982.tb05907.x
  12. K. Mukai, K. Yamada, and Y. Doi, Int. J. Biol. Macromol., 14, 235 (1992). https://doi.org/10.1016/S0141-8130(05)80034-0
  13. M. Vert, Makromol. Chem. Makromol. Symp., 6, 109 (1986).
  14. D. K. Guilding and A. M. Reed, Polymer, 20, 1459 (1979). https://doi.org/10.1016/0032-3861(79)90009-0
  15. T. Iwata, Y. Doi, K. Kasuya, and Y. Inoue, Macromolecules, 30, 833 (1997) https://doi.org/10.1021/ma961352m
  16. Y. Kimura, K. Shirotani, and T. Kitao, Koubunnshi Ronbunshu, 46, 281 (1988).
  17. Y. Kimura, K. Shirotani, H. Yamane, and T. Kitao, Makromol., 21, 3338 (1988). https://doi.org/10.1021/ma00189a037
  18. D. B. Johns, R. W. Lenz, and M. Vert, J. Bioact. Compat. Polym., 1, 47 (1986). https://doi.org/10.1177/088391158600100105
  19. M. Vert, J. Mauduit, and S. Li, Biomaterials, 15, 1209 (1994). https://doi.org/10.1016/0142-9612(94)90271-2
  20. Y. Kimura, K. Shirotani, H. Yamane, and T. Kitao, Polymer, 34, 1741 (1993). https://doi.org/10.1016/0032-3861(93)90335-8
  21. E. E. Schmitt, M. Epstein, and R. A. Polistina, U. S. Pat 3, 442, 871 (1969).