
韓國컴퓨터情報學會 論文誌

第15卷 第7號, 2010. 7.
2010-15-7-1-1

Design of Grid Workflow System Scheduler for Task Pipelining

Lee, Inseon
*

작업 파이프라이닝을 위한 그리드 워크플로우 스케줄러 설계

*이 인 선*

Abstract

The power of computational Grid resources can be utilized on users desktop by employing

workflow managers. It also helps scientists to conveniently put together and run their own

scientific workflows. Generally, stage-in, process and stage-out are serially executed and workflow

systems help automate this process. However, as the data size is exponentially increasing and

more and more scientific workflows require multiple processing steps to obtain the desired output,

we argue that the data movement will possess high portion of overall running time. In this paper,

we improved staging time and design a new scheduler where the system can execute concurrently

as many jobs as possible. Our simulation study shows that 10% to 40% improvement in running

time can be achieved through our approach.

요 약

워크플로우 관리자는 대량의 계산용 그리드 자원을 데스크탑 컴퓨터에서 개인이 편리하게 워크플로우를 만들고

수행할 수 있게 해주는 유용한 도구이다. 보통 데이터는 스테이지-인, 프로세스, 스테이지-아웃의 순서로 순차적으

로 진행되며 워크플로우 시스템은 이 과정을 자동화해준다. 그러나 최근의 e-science에서는 사용되는 데이터 량이

급속하게 증가하고 있고 원하는 출력물을 얻기 위해 여러 번의 과정을 수행하면서 데이터 이동 시간이 전체 수행시

간의 많은 부분을차지하게 되어 스테이징 과정의 개선이 중요한 이슈가 되고 있다. 본 논문에서는 스테이징 과정을

개선하고, 이를 이용하여 가능한 한 많은 작업들을 동시 수행시키는 스케줄러를 설계하였다. 또한 모의실험을 통해

제안한 스케줄러의 성능이 10~40%까지 향상됨을 보였다.

▸Keyword :그리드(grid), 워크플로우(workflow), 작업파이프라이닝(task pipelining), 스케줄러(scheduler)

∙제1저자 : 이인선

∙투고일 : 2010. 04. 13, 심사일 : 2010. 05. 10, 게재확정일 : 2010. 05. 26.

* This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)

(KRF-2007-611-D00027)



2 韓國컴퓨터情報學會 論文誌(2010. 7.)

I. INTRODUCTION

In some scientific fields such as bioinformatics,

biomedical informatics and geoinformatics where

large data processing is essential, information

technology is the driving force behind its rapid

development. Workflow is concerned with the automation

of procedures whereby files and data are passed

between participants according to a defined set of

rules. Workflow systems make complicated middleware

infrastructure and common scientific tools easy to

use for scientists and allow them to conveniently run

their own scientific workflows with simple graphical

interface[1]. In these systems, many interesting

computations can be expressed conveniently as

data-driven task graphs, in which individual tasks

wait for input to be available, perform computation,

and produce output. Most of the workflow systems

have something in common in that the output files of

a prior task need to be staged to a remote site before

processing the task, and similarly, output files may

be required by their children tasks which are

processed on other resources. Therefore, the

intermediate data has to be staged out to the

corresponding Grid sites. The automatic intermediate

data movement can be categorized into centralized,

mediated and peer-to-peer. These approaches

provide the partial or complete automation of

intermediate data movement between interconnected

tasks. However, if the posterior task require the

output of the prior task, the posterior task cannot

begin its execution until the prior task finishes its

writing output. Furthermore, most of the workflow

systems do not launch the posterior task even if the

partial or complete result of the prior task is ready

to feed to the posterior task.

In most of the scientific workflows, we cannot

ignore the intermediate data movement which

possesses high portion of running-time for e-science

applications. Input/output data are becoming larger

and larger time after time. Furthermore, we cannot

ensure that the compute nodes are equipped with

large data storage to afford such large data files.

Therefore, we present here a new task pipelining

framework for scientific workflow management

systems. We took two separate phases in order to

provide a fast file staging. First phase is to design a

storage layer which helps the workflow manager to

schedule several parallel jobs concurrently. A

simplified task pipelining framework for workflow

systems was developed in [2] and it is a simple

distributed file system that supports various legacy

applications without modification to the existing

applications. It also provides a general framework

independently of the workflow management systems

being used. The storage layer can be described in a

workflow specification and thus, a user is able to

construct a task pipelining framework without any

further efforts except presenting a workflow

specification for the Pipe File System(PFS)[2].

Second phase is to have a job scheduler by utilizing

the storage layer so that the total execution time

will be reduced by maximizing the concurrency of

adjacent jobs. Existing workflow schedulers do not

consider the possible pipelining of several jobs. We

use PFS's features in order to improve the execution

time of the workflow process.

HVEM(High Voltage Electron Microscope)-Grid[3]

is our motivation of this work. HVEM-Grid is a Grid

collaboration framework for researchers to help

conduct biological experiments in a convenient

environment. HVEM-Grid system consists of three

components-Control System, Data Grid, and

G-Render aside from GAMA[4] which is used for

user authentication and authorization. In this paper,

we are interested in the image processing workflow,

G-Render, where the processes are tightly connected

in a sequential pipeline. In this workflow, the

posterior task cannot begin its execution until the

output file of prior step is ready to serve. Our

system can serve as a underlying file system for

each process. At first, PFS will be constructed by

running PFS server components. If a user submits a



작업 파이프라이닝을 위한 그리드 워크플로우 스케줄러 설계 3

rendering process, the job manager will first run the

PFS Library so that subsequent file operations will

be forwarded to the PFS. After constructing the

PFS, for each processing step, the input file will be

fed to the next step by writing the data through

PFS. The PipeLined Scheduler(abbreviated as

PLScheduler) waits for the PFS to trigger the

availability of the output file of prior task. If such

condition is met, the PLScheduler will launch the

next process after receiving the trigger message.

In this paper, we developed a new scheduling

algorithm which is called as PLScheduler and our

simulation result shows that our scheduler exhibits

better performance in most of the experimental

settings.

This Paper is organized as follows. Section II

gives a overview of the related work that has been

studied so far. In Section III, we describe two

components of our framework, PFS and PLScheduler

in detail. Section IV explains the interaction of the

components and we present several simulation

results in Section V.

II. RELATED WORK

1. Storage Layer

It is well known that in scientific application

executed on the Grid, the data movement as well as

the job scheduling should be considered[5]. In fact,

there have been several attempts to consider the

data movement in the workflow management system.

In [6], when the tasks on the workflow are executed

by the same machine the input and output is

connected through a pipe. The examples of data

streaming between the tasks that are executed by

the separate machines are Threaded Data

Streaming[7] and Styx Grid Service (SGS)[8]. The

former aims at transferring the terabyte-scale

simulation data to local analysis visualization

cluster. It buffers as soon as the simulation data is

generated, and streams the data in the buffer to

local machine through parallel thread. The latter

streams the data between two service instances by

using Styx protocol. Styx is a message-based

protocol. If a SGS client sends request message,

then a SGS server attaches the data chunk to the

reply message. The simultaneous execution of

multiple tasks connected by chain is possible

through the latter. However, these two approaches

necessitate the modification of the existing

application. Therefore, these are not a satisfactory

solution. In GriddLeS[9] (Grid applications using

Legacy Software), they implemented a File

Multiplexer, a module that maps file system

primitives into either local or remote files, or allows

communication with remote processes. Our

framework differs from GriddLeS in that we provide

a general framework for various workflow managers.

VLAM-G[10] uses dataflow between simultaneously

executing distributed components as an execution

driving activity. VLAM-G supports the data

streaming by scheduling jobs according to the data

flow. Our system is distinguished from VLAM-G in

that scheduling strategies of legacy workflow

managers can be easily integrated. In [2], a storage

layer for e-science workflow management systems,

called PFS is designed. PFS makes it easy to

integrate IO layer with workflow scheduler through

triggering interface.

2. Scheduler

Scheduling of computational tasks on the Grid is

a complex optimization problem which is an ongoing

research effort followed by many groups. Scheduling has

been studied in various communities[11]-[14]. Yu et. al[15]

summarized various workflow scheduling methods according

to scheduling architecture, decision making, planning

scheme, strategies, and performance estimation. Static

scheduler utilizes static information or the result of

performance estimation. Most of the existing workflow

schedulers use static information as their basic

measurement. Dynamic schedulers use dynamic information



4 韓國컴퓨터情報學會 論文誌(2010. 7.)

Fig. 1. Grid Workflow Architecture with PFS & PLScheduler

in conjunction with some results based on prediction. Since

the execution environment becomes different minute by

minute, they use monitoring services in order to retrieve

dynamic information such as CPU usage, bandwidth, disk

usage, etc. The Monitoring and Discovery System (MDS) of

Globus Toolkit 4 allows users to discover what resources

are considered part of a Virtual Organization (VO) and to

monitor those resources. GridRod[16] is a new service

oriented workflow-scheduling tool. It leverages the existing

flexible IO mechanisms provided by GriddLeS to achieve

runtime flexibility.

III. DESIGN

1. Storage Layer: PFS

We considered following properties in designing

our system so that it can be adopted to many

workflow management systems for various e-Science

Grid applications.

First of all, we emphasized on supporting various

legacy applications. Within a Grid environment, the

vast majority of scientific applications executed by

scientists can be considered legacy. Our design

choice is to build a virtual storage layer for the

existing workflow management systems as well as

legacy applications. Since many legacy applications

use POSIX API as their basic I/O operations, we support

them by adopting the FUSE as our basic client library. Our

system is implemented as a user-level file system using

FUSE kernel module. It operates on top of existing file

systems such as ext3, reiserFS, etc. In essence, FUSE traps

system calls and upcalls to the PFS Manager or PFS Data

Server depending on the request. Therefore, users are not

required to modify their applications to use our system in

running their applications.

Secondly, we place our emphasis on flexibility. We

expect to provide a general solution to the problems

mentioned in Section I, independently of the

workflow management systems being used. Therefore

we design a general pipelining framework which can

be easily integrated with other existing workflow

systems. Our simple triggering interface enables

scientists to deploy our system as they deploy their

science applications.

Finally, usability is one of our important

concerns. Our system is comprised of pure user-level

applications. By this, we mean that our system can

be described in a workflow specification and thus, a

user is able to construct a task pipelining

framework without any further efforts except

presenting a workflow specification for the PFS.

There have been several researches that can be

applied to our pipelining framework. Our framework

can be implemented in a form of data distribution or data

dissemination middleware such as publish/subscribe

system (pub/sub), resource broker, or distributed file



작업 파이프라이닝을 위한 그리드 워크플로우 스케줄러 설계 5

system (DFS). We choose DFS as our basic

framework for the following reasons. Firstly, many

legacy applications deal with the I/O operations

through POSIX API calls, and in this context, read

and write calls are obviously invoked by the

applications when users need to read/write

input/output data. Pub/sub system simply forwards

the published data to the subscribers right after the

data arrival. Basically, it lacks the ability to

transmit the requested amount of data afterwards.

Furthermore, in these systems, the structured

directory management is not a trivial task. In

addition, except for DFS, it is hard to avoid the

modification of existing application source code.

This may cause a significant code rewriting process

to the researchers. Thus, we have chosen DFS as

our framework to support task pipelining.

PFS supports primitive operations of distributed

file systems such as read, write, open delete, etc.

The architecture of PFS looks similar to Google File

System in that one PFS Manager manages several

PFS Data Servers in which physical files are

actually stored. However, we have supplemented

important features in order to easily integrate with

existing workflow systems. Fig.1 describes Grid

workflow architecture with PFS and PLScheduler at

a glance. Server-side of a PFS consists of a single

PFS Manager and multiple PFS Data Servers, on

the other hand, client-side of a PFS consists of

clients which access a PFS through FUSE library on

behalf of the application. The PFS Manager maintains

all DFS-related metadata, such as namespace,

directory structure, and the mapping from files to

PFS Data Server. A PFS Data Server stores the

physical files in its storage and serves read/write

requests from the clients. PFS Library includes a

FUSE (Filesystem in user space) library and PFS

Client, where the former intercepts the file

input/output requests and the latter handles the

requests interacting with the server-side components

of PFS. PFS components are put together as a whole

to provide the functionality such as directory

management, global naming, logical to physical file

mapping, file archiving and schedule-triggering. The

following sections describe the detailed explanation

of each component. In section IV, we will illustrate

the interaction of these components in detail.

1.1 PFS Manager

The PFS Manager is a resource manager for the

PFS Data Servers. When a PFS Data Server is

willing to provide its storage space with the users, it

participates in the PFS system by registering itself

in the PFS Manager. PFS Manager maintains the

current PFS Data Server list in its memory. If a

user is opening a file in read or write mode, the PFS

Manager selects one of the PFS Data Servers and

redirects the subsequent read/write requests for that

file to the corresponding PFS Data Server. Directory

management is another key feature that the PFS

Manager provides. Although the physical files are

actually distributed over the PFS Data Servers, the

PFS Manager supplies a unified view of the current

directory structure. To help the clients to view the

file system as a single entity, the PFS Manager

supports a global file naming scheme.

The PFS Manager is a single access point for the

clients. A client can mount the PFS through the

FUSE kernel module and manipulate the files as is

usual with him. Metadata POSIX operations such as

getattr, setattr, open, close are directly handled by

the PFS Manager. PFS Manager also provides a

triggering interface so that the various workflow

managers may schedule the next task right after the

redefined amount of data is ready to serve. This

interface enables our system to easily integrate with

existing workflow systems. In addition, PFS

Manager supports data archiving to the underlying

storage such as GridFTP. We regard the PFS as a

temporary layer for a single scientific workflow.

Therefore, archiving intermediate and final data is

an ultimate staging process for the entire job.

1.2 PFS Data Server

The PFS Data Server is responsible for storing



6 韓國컴퓨터情報學會 論文誌(2010. 7.)

1: Sn ← |V|

2: R ← N {number of Resources}

3: Cp ← Cp is a subset of |E| {set of parallel edges}

4: Cs ← Cs is a subset of |E| {set of sequential

edges}

5: procedure schedule(A,i,j)

6: while Sn ≠ Ø do

7: Ssj ← 0 {set of sorted ready jobs}

8: Ssj ← call(getReadyJobs, NULL) {get Sorted

Ready Jobs}

9: R ← R + call(relinquishResources, NULL)

{relinquish resources from done jobs}

10: SBF ← Ø {set of clustered jobs from BF

traversal}

11: CBF ← 0 {total cost units for Breadth First}

12: SDF ← Ø {set of clustered jobs from DF

traversal}

13: CDF ← 0 {total cost units for Depth First}

14: call(traverseBF, Ssj, CBF,SBF)

15: for each Pj ∈ Ssj do

16: CSDF ←0 {total cost units for Depth

First for single seed}

17: SSDF ← Ø {set of clustered jobs from

DF traversal for single seed}

physical files and handling read/write operations

from clients. PFS Data Server stores physical files in

its storage. When it begins its work, the PFS Data

Server first registers itself to the PFS Manager.

When accessing a file for read/write, a client can

identify through the PFS Manager the hostname and

physical path of the file to access . Then, the PFS

library, on behalf of the client, redirects the

subsequent read/write requests to the PFS Data

Server obtained from the previous step. The PFS

Data Server serves the read/write request and

transmits the requested data to the PFS Library.

When the predefined amount of data is available for

a given file, it notifies the PFS Manager of the

arrival of sufficient amount of data so that the PFS

Manager may trigger the scheduling of the next task.

1.3 PFS Library

The PFS Library consists of FUSE kernel module

and PFS Client. PFS does not deploy the FUSE

kernel module since FUSE is being widely deployed

in the main Linux distributions recently. When PFS

Library first executes, it mounts the PFS on the

given mount point so that subsequent file system

access may be handled by the PFS system. Every

POSIX API call is intercepted by the FUSE kernel

module and it is redirected to the PFS Client. When

opening a PFS file, the PFS Client first looks up

the file by querying the PFS Manager and acquires

the proper file handle which contains the PFS Data

Server information to contact. This information

regarding the open files is maintained by the PFS

Client and subsequent requests are redirected to the

appropriate PFS Data Server.

2. Workflow Scheduler: PLScheduler

The PLScheduler basically follows GridRod[17],

the dynamic workflow scheduler for GriddLeS[9]. In

GridRod, they consider two possible concurrency -

spatial and temporal concurrency. Spatial concurrency

is achieved by executing all the components

simaltaneously. This is represented in the workflow

graph by breadth first traversal. On the other hand,

temporal concurrency depends on the IO behavior of

the jobs. If two jobs can be executed concurrently,

for example, they do not have IO dependency,

they are considered to be safe to run simultaneously.

GridRod improves the throughput by exploring both

types of concurrency in order to optimize scheduling.

They developed variants of Breadth and Depth First

search approaches, which performs repeated searches

along the orthogonal directions until a halting

condition is encountered. We extended the GridRod

to achieve performance improvement by exploiting

the potential concurrency. Our algorithm begins with

a simple principle - execute jobs as soon as the data

is available. In order to improve performance, we

utilize the triggering interface of PFS. The detailed

scheduling algorithm is shown in Fig. 2.



작업 파이프라이닝을 위한 그리드 워크플로우 스케줄러 설계 7

18: call(traverseDF, Pj, CSDF,SSDF)

19: SDF ← SDF + SSDF

20: CDF ← CDF + CSDF

21: end for

22: if CBF < CDF then

23: execute SDF

24: Sn ← Sn - SDF

25: else

26: Sn ← Sn - SBF

27: end if

28: end while

29: procedure getReadyJobs()

30: for each p ∈ Sn do

31: q ← PARENT(p)

32: e ← p → q {e: the edge between p and q}

33: if STATUS(q) in (done, executing) then

34: if e ∈ Cp && R > 1 then

35: STATUS(p) ← ready

36: else if e∈Cs && R>1 && (STATUS(q)

=

done || OUTPUT_AVAILABLE(q)) then

37: STATUS(p) ← ready

38: end if

39: end if

40: end for

41: return Sn

42:

43: procedure traverseDF(p,CDF,SDF)

44: Jc ← {q : for all p → q, set of all children of p}

45: for each q ∈ Jc do

46: if CHILDREN(q) ≠ Ø then

47: traverseDF(q, CDF, SDF)

48: else

49: r ← allocate(q)

50: if x then

51: CDF += c(q) {c: cost unit}

52: SDF ← SDF + q

53: R ← R - r {remove chosen resource}

54: end if

55: end if

56: end for

57: procedure traverseBF(Ssj,CBF,SBF)

58: LBF ← {Ssj} {LBF set of BF jobs; local variable}

59: while LBF ≠ Ø do

0: for each p ∈ LBF do

61: LBF ← LBF + CHILDREN(p)

62: x ← allocate(p)

63: if x then

64: CBF += c(p) {c:: cost unit}

65: SBF ← SBF +p

66: R ← R - r {remove chosen resource}

67: end if

68: end for

69: end while

70: procedure allocate(p)

71: if !R then

72: return 0

73: end if

74: q ← PARENT(p) {q: parent of p}

75: r ← call(chooseResource,p,R) {select resource for

p from R}

76: return r

Fig. 2. PLScheduler Algorithm

IV. SYSTEM INTERACTION

In Fig. 3, we depicted the information flows of our

system. Each task is scheduled by the PLScheduler

and executes while reading and writing from the

PFS data server. When the output is ready to be

passed on to the following task, the PFS Manager

notifies the PL Scheduler which in turn schedule the

task pipelining. More detailed description of the

system interaction is as follows.



8 韓國컴퓨터情報學會 論文誌(2010. 7.)

Fig. 3. Information Flow between Components

1. Data Server Registration

Every PFS Data Server should inform the PFS

Manager of its existence. When a PFS Data Server

first starts up, it is initially given the address of the

PFS Manager. With this information, it contacts the

PFS Manager and sends its IP address. Receiving

this information, the PFS Manager inserts an PFS

Data Server entry into the data server list. This list

is used in PFS Data Server selection during file

creation.

2. Job Schedule Triggering

PFS not only acts as a distributed data storage,

but also cooperates with a workflow manager to

realize task pipelining. A typical workflow manager

waits for the current running task to complete after

activating the task. This structure makes matters

hard to provide task pipelining since the workflow

manager does not launch the next dependent task

even if the current task has already finished its data

writing.

In order to realize this concurrent execution, the

workflow manager should notice the readiness of the

interesting data. However existing workflow

managers cannot determine whether the output file

has arrived or not. In our system, since PFS

manages all the I/O operations of the client, it can

perceive the data arrival that will be provided as an

input to the next task. Therefore, PFS Manager

notifies the workflow manager of the data arrival

after it receives a predefined amount of data which

is consistent throughout the system, which we refer

to as schedule-triggering. For existing workflow

managers, schedule-triggering is a signal that indicates

the readiness of the minimal necessary data. If we

incorporated the PFS and workflow manager in a

single system, schedule-triggering would be noticed

by the workflow manager itself. But we attach

importance to the decoupling of workflow manager

and PFS layer, otherwise, PFS layer will be

dependent on a specific workflow manager, which is

not desirable.

3. Read/Write Pipelining

Applications behave in a traditional way in which

prior task writes output data and posterior task

reads them as an input. In a traditional workflow

system, the posterior task cannot execute until the

prior task completes its execution and thus, the

posterior task always sees the completed view of the

data. But in our system, the posterior task begins

its execution despite that the prior task is in the

middle of writing the output data, once the

schedule-triggering is delivered by the PFS Manager.

Therefore, the posterior task should acquire a

refreshed view whenever the data is appended by

the prior task. It is inefficient to update the

posterior task's view whenever the data is written

by the prior task. We, therefore, forces the posterior

task to periodically update its view during the read

process. In this way, prior task's output can be

delivered to the posterior task concurrently.

4. Directory Management

Directory in PFS is a virtual resource maintained

for the user's convenience. Actual directory is stored

in PFS Manager's main memory in a hierarchical

structure like Linux directory structure, so that users

can access the directory in a usual way. Internally,

the directory is a hash table of (logical file name,

directory entries) pairs. Therefore, file lookup is a

simple process of retrieving a hash table entry.



작업 파이프라이닝을 위한 그리드 워크플로우 스케줄러 설계 9

V. Evaluation

1. Simulator

We implemented a event simulator that mimics

the behavior of two scheduler, GridRod and

PLScheduler. In [17], the authors indicate that

analyzing the behavior of scheduling models on large

and heterogeneous platforms such as a Grid is

extremely difficult. A couple of reasons are explained

in detail in their paper. They also developed a

random workflow graph generator. The generator

takes three parameters to construct the random

workflow graph. Firstly, aspect ratio defines the

ratio of breadth vs. depth in the graph, and is

specified as a value between 0 and 1. If the value is

0, the depth of the graph becomes 1. Secondly,

streaming factor is a probability measure of the

streaming between workflow components. The value

lies between 0 and 1, where in the former setting,

all the edges are sequential edges and all the edges

become parallel edges in the latter setting. The

streaming factor specifies the degree of the

parallelism that can be achieved.

name value

aspect ratio(ar) 0.2 ~ 0.8

streaming factor(sf) 0.3, 0.7

# of resource 10, 20

Table 1. Parameter values used in the simulation

Finally, number of resources determines how

many resources are supplied in the current setting.

We generated a large number of workflow graphs

with various parameter settings. We varied the

aspect ratio and the streaming factor from 0.2 to 0.8

in order to show that our algorithm works in various

workflow graphs. We set the number of resources 10

and 20. Also, we assign IO time to each task, which

is extracted with uniform distribution between

95-99% of the processing time. For each setting, we

repeated the simulation five times. We averaged and

normalized the running time of GridRod and

PLScheduler. Table 1 summarizes the parameters

we used in the simulation.

2. Simulation Result

ar=0.2 ar=0.4 ar=0.6 ar=0.8

sf=0.3 22% 18% 19% 30%

sf=0.7 15% 13% 12% 40%

Table 2. Speedup of PLScheduler compared with GridRod
(# of resources = 10)

ar=0.2 ar=0.4 ar=0.6 ar=0.8

sf=0.3 24% 17% 21% 29%

sf=0.7 13% 10% 13% 35%

Table 3. Speedup of PLScheduler compared with GridRod
(# of resource = 20)

In table 2 and 3, we show the speedup of our

scheduling algorithm compared with the GridRod.

In most of the settings, our scheduler outperforms

GridRod up to 40 percent. We explain this

performance improvement in two folds - resource

utilization and parallelism maximization. Our

scheduler utilizes resource more efficiently for the

following reasons. If the two jobs can be executed in

parallel and the child node depends on the parent

job, the child job cannot move forward until the

parent job begins writing its output file.

In GridRod, since the scheduler executes both of

the jobs concurrently, the child job will possess the

resource even if the job actually cannot proceed its

execution. On the other hand, in our scheduler, the

child job will not occupy the resource until the

parent job produces the output. In perspective of

parallelism maximization, our scheduler launches

the child jobs as soon as the output of the parent job

is available (output of the parent process usually

becomes the input of the child process).



10 韓國컴퓨터情報學會 論文誌(2010. 7.)

REFERENCES

[1] 황선태, 심규호, "계산그리드에서 워크플로우기반의 사용

자환경 설계 및 구현," 한국컴퓨터정보학회논문지, 제 10

권, 제 4호, 165-171쪽, 2005년 9월.

[2] H.S.Kim, and H.Y.Yeom, “A task pipelining framework

for e-science workflow systems,” 3rd workflow

Systems for e-Science(WSES), May 2008.

[3] I.Y.Jung, I.S. Cho, H.Y.Yeom, H.S. Kweon, and

J.Lee, “HVEM DataGrid : Implementation of a

Biologic Data Management System for Experiments

with High Voltage Electron Microscope,” Lecture

Notes in Computer Science, Vol.4360, pp.175-190,

2006,

[4] Karan Bhatia, Sandeep Chandra, Kurt Mueller.

“GAMA:Grid Account Management Architecture,"

International Conference on e-Science and Grid

Computing(e-Science'05), 2005.

[5] K.Ranganathan, and I.Foster, "Decoupling computation

and data scheduling in distributed data-intensive

applications," International Symposium on High

Performance Distributed Computing(HPDC), 2002.

[6] T.M. McPhillips, and S. Bowers, "An approach

for pipelining nested collections in scientific

workflows," ACM SIGMOD Record, Vol. 34,

No.3, pp.12-17, 2005.

[7] V.Bhat, S.Klasky, S.Atchley, M.Beck, D.McCune,

and M.Parashar, "High performance threaded

data streaming for large scale simulations,"

IEEE/ACM International Workshop on Grid

Computing, 2004.

[8] J.Blower, K.Haines, and E.Llewellin, "Data streaming,

workflow and firewall-friendly grid services with

Styx," UK e-Science All Hands Meeting, Nov.

2005.

[9] D.Abramson, and J.Kommineni,"A flexible IO scheme

for grid workflows," International Parallel &

Distributed Processing Symposium(IPDPS), Arpil

2004.

[10] V.Korkhov, D.Vasyunin, A.Wibisono, A.S.Belloum, M.A.

Inda, M.Roos, T.M.Breit, and L.Hertzberger, "VLAM-

G:Interactive data driven workflow engine for

grid-enabled resources," Journal of Scientific

Programming, Vol.15, No.3, pp.173-188, 2007.

[11] A.Mandal, K.Kennedy, C.Koelbel, G.Marin,

J.Mellor-Crummey, B.Liu, and L.Johnsson,

"Scheduling strategies for mapping application

workflows onto the grid," 14th IEEE International

Symposium on High Performance Distributed

Computing(HPDC), July 2005.

[12] S.Frdric, D.Frdric, and C.Henri, "From heterogeneous

task scheduling to heterogeneous mixed parallel

scheduling," International Euro-Par Conference.

2005.

[13] 이준동, 이무훈, 최의인, “그리드 컴퓨팅 환경에서 확장

가능한 분산 스케줄링,” 한국컴퓨터정보학회논문지, 제

12권, 제 6호, 1-9쪽, 2007년 12월.

[14] 박량재, 장성호, 조규철, 이종실, “계산그리드를 위한 퍼

지로직 기반의 그리드 작업스케줄링 모델,” 한국컴퓨터

정보학회논문지, 제 12권, 제 5호, 49-56쪽, 2007년

11월.

[15] J.Yu, and R.Buyy, “A taxonomy of workflow

management systems for grid computing,”

Journal of Grid Computing, Vol. 3, No. 3-4,

pp.171-200, Sep. 2005.

[16] S.Ayyub, and D.Abramson, "GridRod- a dynamic

runtime scheduler for grid workflows," International

Supercomputing Conference(ISC) 2007, June

2007.

저 자 소 개

Inseon Lee is an Assistant Professor

with the Dept. of Computer

Information Processing,

Shingu University. She

received her B.S. from

SNU in 1987, a Master's

from KAIST in 1996 and

Ph.D from SNU in 2003 all

in computer science.

Recently, her research

interests are grid and cloud

computing..


