HERZ T WS Gk

W15% TR, 2010, 7. 2010-15-7-1-1

Design of Grid Workflow System Scheduler for Task Pipelining

Lee, Inseon”

A ojojzeo|dE fish OB H53EEF AAIE X

o) 21 4°

v

Abstract

The power of computational Grid resources can be utilized on users desktop by employing
workflow managers. It also helps scientists to conveniently put together and run their own
scientific workflows. Generally, stage-in, process and stage-out are serially executed and workflow
systems help automate this process. However, as the data size is exponentially increasing and
more and more scientific workflows require multiple processing steps to obtain the desired output,
we argue that the data movement will possess high portion of overall running time. In this paper,
we improved staging time and design a new scheduler where the system can execute concurrently
as many jobs as possible. Our simulation study shows that 10% to 40% improvement in running
time can be achieved through our approach.

O Of
I =

92T BeAE theke] AR 2= A9 tlaTg AHENA A] Belehl 9aT2eE e
Saa 5 QA S 89 Erolth BE Blojeks 2BjolA-gl, TRAl, sBjoll-okee] £ME wRHo
2 A9 YAz AxEe o] AL Az e H29) e sciencedl e AHEEE HoJE Fol
Fa1) 27Kk 9l Aake 2UES A7) 93 ofe] wel S s BlofE] olE Alzlo] WA 434
e 2E-g AAeH S0} 28jolg Bge) o] 2 o7t HT Yk B w=RAE 2Hold 39S
Mdska, ol olgat 7Fsd 3 Be AYEL B4 FaAY)E 242N AASAT, £2 RNES S

AR 2AIEH Y Asol 10740%7HA] FdEs B3tk

e
o

» Keyword : J2|=(grid), HFE2Rworkflow), 2|0 |=2}0|'H(task pipelining), 2AZE24(scheduler)

« H1AMA} - o]eIM

« E112 1 2010. 04. 13, AAIY : 2010. 05. 10, HIZHEH ! : 2010. 05. 26.

* This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)
(KRF-2007-611-D00027)

2 W FE A e M (2010, 7)

|. INTRODUCTION
In some scientific fields such as bioinformatics,
biomedical
large data processing is essential, information
technology is the drving force behind its rapid
development. Workflow is concemed with the automation
of procedures files and data are passed
between participants according to a defined set of
rules. Workflow systems make complicated middleware
infrastructure and common scientific tools easy to

informatics and geoinformatics ~ where

whereby

use for scientists and allow them to conveniently run
their own scientific workflows with simple graphical
interface[ll. In these
computations can be conveniently — as
data-driven task graphs, individual tasks
wait for input to be available, perform computation,

systems, many interesting
expressed

in which

and produce output. Most of the workflow systems
have something in common in that the output files of
a prior task need to be staged to a remote site before
processing the task, and similarly, output files may
be required by their children tasks
processed on other resources. Therefore, the
intermediate data has to be staged out to the
corresponding Grid sites. The automatic intermediate
data movement can be categorized into centralized,
mediated and peer—to—peer. These
provide the partial or complete
intermediate data movement
tasks.

which are

approaches
automation of
between interconnected
However, if the posterior task require the
output of the prior task, the posterior task cannot
begin its execution until the prior task finishes its
writing output. Furthermore, most of the workflow
systems do not launch the posterior task even if the
partial or complete result of the prior task is ready
to feed to the posterior task.

In most of the scientific workflows,

intermediate data movement

we cannot
which
possesses high portion of running-time for e-science
Input/output data are
and larger time after time.

ignore the

applications. becoming larger

Furthermore, we cannot

ensure that the compute nodes are equipped with
large data storage to afford such large data files.
Therefore, we present here a new task pipelining
framework for management
systems. We took two separate phases in order to

scientific ~ workflow
provide a fast file staging. First phase is to design a
storage layer which helps the workflow manager to
schedule parallel jobs
simplified task pipelining framework for
systems was developed in [2] and it is a simple

several concurrently. A

workflow

distributed file system that supports various legacy
modification to the
It also provides a general framework

applications ~ without existing
applications.
independently of the workflow management systems
being used. The storage layer can be described in a
workflow specification and thus, a user is able to
construct a task pipelining framework without any
further efforts

specification for the

presenting a workflow
Pipe File System(PFS)[2].
Second phase is to have a job scheduler by utilizing

except

the storage layer so that the total execution time
will be reduced by maximizing the concurrency of
schedulers do not
consider the possible pipelining of several jobs. We

adjacent jobs. Existing workflow

use PFS’s features in order to improve the execution
time of the workflow process.

HVEM(High Voltage Electron Microscope)-Grid[3]
is our motivation of this work. HVEM-Grid is a Grid
framework ~ for to help
biological ~experiments in a convenient
HVEM-Grid system consists of three
components-Control System, Data Grid, and
G-Render aside from GAMA[4] which is used for
user authentication and authorization. In this paper,

collaboration researchers
conduct

environment.

we are interested in the image processing workflow,
G-Render, where the processes are tightly connected
In this

its execution until the

in a sequential pipeline. workflow, the
posterior task cannot begin
output file of prior step is ready to serve. Our
system can serve as a underlying file system for
each process. At firstt PFS will be constructed by

running PFS server components. If a user submits a

2] ol xetold S A3 2= JATES 2AEH A4 3

rendering process, the job manager will first run the
PFS Library so that subsequent file operations will
be forwarded to the PFS. After constructing the
PFS, for each processing step, the input file will be
fed to the next step by writing the data through
PFS. The Pipelined Scheduler(abbreviated — as
PLScheduler) waits for the PFS to trigger the
availability of the output file of prior task. If such
PLScheduler will launch the

next process after receiving the trigger message.

condition is met, the

In this paper, we developed a new scheduling
algorithm which is called as PLScheduler and our
simulation result shows that our scheduler exhibits
better
settings.

This
gives a overview of the related work that has been
studied so far. In Section I, we describe two
components of our framework, PFS and PLScheduler
in detail. Section IV explains the interaction of the

performance in most of the experimental

Paper is organized as follows. Section II

components and we several simulation

results in Section V.

present

Il. RELATED WORK

1. Storage Layer

It is well known that
executed on the Grid, the data movement as well as
the job scheduling should be considered5]. In fact,
there have been several attempts to consider the

in scientific application

data movement in the workflow management system.
In [6], when the tasks on the workflow are executed
by the
connected through a pipe. The examples of data

same machine the mput and output 1is

streaming between the tasks that are executed by

the separate machines are Threaded Data
Streaming[7] and Styx Grid Service (SGS)Sl. The
former ams at transferring the terabyte-scale

simulation data to local analysis visualization

cluster. It buffers as soon as the simulation data is

generated, and streams the data in the buffer to
local machine through parallel thread. The
streams the data between two service instances by
using Styx protocol. Styx is a
protocol. If a SGS client sends request message,
then a SGS server attaches the data chunk to the
reply message. The
multiple tasks connected by
through the latter.
necessitate the

latter

message-hased

simultaneous execution of

chain is possible
However, these two approaches
modification ~ of the
Therefore, these are not a satisfactory

GriddLeS[9] (Grid using
they implemented a File
module that
primitives into either local or remote files, or allows
communication with remote Drocesses. Our
framework differs from GriddLeS in that we provide

a general framework for various workflow managers.

existing
application.

solution. In applications
Legacy Software),

Multiplexer, a maps file system

VLAM-GI10] wuses dataflow between simultaneously
executing distributed components as an execution
driving activity. VLAM-G supports the data

streaming by scheduling jobs according to the data
flow. Our system is distinguished from VLAM-G in
that scheduling
managers can be easily integrated. In [2], a storage

strategies of legacy workflow
layer for e-science workflow management
called PFS PFS makes

mtegrate 10 layer with workflow scheduler through

systems,
is designed. it easy to
triggering interface.

2. Scheduler

Scheduling of computational tasks on the Grid is
a complex optimization problem which is an ongoing
research effort followed by many groups. Scheduling has
been studied in various communities[11]-[14]. Yu et. al[15]
summarized various workflow scheduling methods according
making,
and performance estimation. Static

to scheduling architecture, decision planning

scheme, strategies,
scheduler utilizes static information or the result of
performance estimation. Most of the existing workflow
static their basic

measurement. Dynamic schedulers use dynamic information

schedulers use information ~ as

4 W FE A e M (2010, 7)

Server-Side

Trigger Interface

. / _’/"

w L o

‘ir/,ﬁ PES Manager

PLScheduler

Workflow
Manager

=
ey

) . - I PFS Data Server ; I eoe I PFs Data‘ Server,, I

rrrrrrrrrrrrrrrrrrr Data
Metadata

— w3 e Control

— enactment
Y
o

® @ e
- e v e v
Workflow spec

For the
application

wWorkflow spec
For the PFS

Fig. 1. Grid Workflow Architecture with PFS & PLScheduler

in conjunction with some results based on prediction. Since
the execution environment becomes different minute by
minute, they use monitoring services in order to retrieve
dynamic information such as CPU usage, bandwidth, disk
usage, etc. The Monitoring and Discovery System (MDS) of
Globus Toolkit 4 allows users to discover what resources
are considered part of a Virtual Organization (VO) and to
monitor those resources. GridRod[16] is a new service
oriented workflow-scheduling tool. It leverages the existing
flexible IO mechanisms provided by GriddLeS to achieve
runtime flexibility.

lIl. DESIGN

1. Storage Layer: PFS
in designing
adopted to many

We considered following properties
our system so that it can be
workflow management systems for various e-Science
Grid applications.

First of all, we emphasized on supporting various
Within a Grid environment, the
vast majority of scientific applications executed by
can be legacy. Our design
choice is to build a wvirtual storage layer for the

legacy applications.

scientists considered
existing workflow management systems as well as
legacy applications. Since many legacy applications

use POSIX API as their basic I/O operations, we support

them by adopting the FUSE as our basic client library. Our
system is implemented as a user-level file system using
FUSE kernel module. It operates on top of existing file
systems such as ext3, reiserES, etc. In essence, FUSE traps
system calls and upcalls to the PFS Manager or PFS Data
Server depending on the request. Therefore, users are not
required to modify their applications to use our system in
running their applications.

Secondly, we place our emphasis on flexibility. We
expect to provide a general solution to the problems
mentioned in Section I independently of the
workflow management systems being used. Therefore
we design a general pipelining framework which can
be easily integrated with
systems. Our simple triggering
scientists to deploy our system as they deploy their

other existing workflow
interface enables
science applications.

Finally,

concerns. Our system is comprised of pure user-level

usability is one of our important
applications. By this, we mean that our system can
be described in a workflow specification and thus, a
construct a task pipelining
further efforts except
specification for the PFS.
There have been several researches that can be

user is able to
framework ~ without any
presenting a workflow
applied to our pipelining framework. Our framework
can be inplemented in a form of data distribution or data
publish/subscribe
system (pub/sub), resource broker, or distributed file

dissemination middleware such as

Z] go|zalo|YE Y8 adE YAZRS 2AZY AA 5

system (DFS). We choose DFS as our basic
framework for the following reasons. Firstly, many
legacy applications deal with the I/O operations

through POSIX API calls, and in this context, read

and write calls are obviously invoked by the
applications when users need to read/write

input/output data. Pub/sub system simply forwards
the published data to the subscribers right after the
data arrival. Basically, it lacks the ability to
transmit the requested amount of data afterwards.
these systems, the structured
directory management is not a trivial task. In
addition, except for DFS, it is hard to avoid the
modification of code.

This may cause a significant code rewriting process

Furthermore, in

existing application source

to the researchers. Thus, we have chosen DFS as
our framework to support task pipelining.

PFS supports of distributed
file systems such as read, write, open delete, etc.
The architecture of PFS looks similar to Google File
System in that one PFS Manager manages several
PFS Data Servers

primitive operations

in which physical files are

actually stored. However, we have supplemented
important features in order to easily integrate with
existing workflow systems. Fig.l describes Grid

workflow architecture with PFS and PLScheduler at
a glance. Server-side of a PFS consists of a single
PFS Manager and multiple PFS Data Servers, on
the other hand, client-side of a PFS consists of
clients which access a PFS through FUSE library on
behalf of the application. The PFS Manager maintains
all DFS-related metadata,
directory structure,
PFS Data Server.
physical files in

such as namespace,
and the mapping from files to
A PFS Data Server stores the
its storage and serves read/write
requests from the clients. PFS Library includes a
FUSE library and PFS
Client, intercepts the file
input/output handles the

interacting with the server-side components

(Filesystem in user space)
where the former
requests and the latter
requests
of PFS. PFS components are put together as a whole
functionality directory

to provide the such as

logical to physical file
file archiving and schedule-triggering. The
describe the detailed explanation
of each component. In section IV, we will illustrate

management, global naming,
mapping,

following sections

the interaction of these components in detail.

1.1 PFS Manager

The PFS Manager is a resource manager for the
PFS Data Servers. When a PFS Data Server is
willing to provide its storage space with the users, it
participates in the PEFS system by registering itself
in the PFS Manager. PFS Manager maintains the
curent PFS Data Server list in its memory. If a
user is opening a file in read or write mode, the PFS
Manager selects one of the PFS Data Servers and
redirects the subsequent read/write requests for that
file to the corresponding PFS Data Server. Directory
is another key feature that the PFS
Manager provides. Although the physical files are
actually distributed over the PFS Data Servers, the
PFS Manager supplies a unified view of the current
directory structure. To help the clients to view the
PFS Manager

management

file system as a single entity, the
supports a global file naming scheme.
The PFS Manager is a single access point for the
clients. A PES through the
FUSE kernel module and manipulate the files as is
usual with him. Metadata POSIX operations such as
getattr, setattr, open, close are directly handled by
the PFS Manager. PFS Manager also provides a
triggering interface so that
managers may schedule the next task right after the
redefined amount of data

client can mount the

the various workflow
is ready to serve. This
interface enables our system to easily integrate with
addition, PFS
Manager supports data archiving to the underlying
storage such as GridFTP. We regard the PFS as a
temporary
Therefore,

existing ~ workflow systems. In

layer for a single scientific workflow.
intermediate and final data is
an ultimate staging process for the entire job.

archiving

1.2 PFS Data Server
The PFS Data Server is responsible for storing

6 W FE A e M (2010, 7)

and handling read/write
from clients. PFS Data Server stores physical files in
its storage. When it begins its work, the PFS Data
Server first itself to the PFS Manager.
When accessing a file for read/write, a client can
identify through the PFS Manager the hostname and
Then, the PFS
client, redirects the
to the PFS Data
Server obtaned from the previous step. The PFS
Data Server read/write request and
transmits the requested data to the PFS Library.
When the predefined amount of data is available for
a given file, it notifies the PFS Manager of the
arrival of sufficient amount of data so that the PFS
Manager may trigger the scheduling of the next task.

physical files operations

registers

physical path of the file to access .
behalf of the

read/write

library, on
subsequent requests

serves the

1.3 PFS Library

The PFS Library consists of FUSE kermel module
and PFS C(lient. PFS does not deploy the FUSE
kernel module since FUSE is being widely deployed
in the main Linux distributions recently. When PFS
PFS on the
given mount point so that subsequent file system
access may be handled by the PFS system Every
POSIX API call is intercepted by the FUSE Kkernel
module and it is redirected to the PFS Client. When
PFS Client first looks up
the file by querying the PFS Manager and acquires
the proper file handle which contains the PFS Data
This
regarding the open files is maintained by the PFS

Library first executes, it mounts the

opening a PES file, the

Server information to contact. information
Client and subsequent requests are redirected to the

appropriate PEFS Data Server.

2. Workflow Scheduler: PLScheduler

The PLScheduler basically follows GridRod[17],
the dynamic workflow scheduler for GriddLeS[9]. In
GridRod, they consider two possible concurrency -
spatial and temporal concurrency. Spatial concurrency
is achieved by
simaltaneously. This is represented in the workflow
graph by breadth first traversal. On the other hand,

executing all the components

temporal concurrency depends on the IO behavior of
the jobs. If two jobs can be executed concurrently,
for example, they do not have IO dependency,

they are considered to be safe to run simultaneously.
GridRod improves the throughput by exploring both
types of concurrency in order to optimize scheduling.
They developed variants of Breadth and Depth First
search approaches, which performs repeated searches
along the orthogonal directions halting
is encountered. We extended the GridRod
to achieve performance improvement by exploiting
the potential concurrency. Our algorithm begins with

a simple principle - execute jobs as soon as the data

until a

condition

is avalable. In order to improve performance, we
utilize the triggering interface of PFS. The detailed

scheduling algorithm is shown in Fig. 2.

11 Sy < VI

2 R < N {number of Resources}

3 C, < C,is a subset of |El {set of parallel edges}

4 Cs < Cs is a subset of |El

edges}

5. procedure schedile(AlLj)

6 while S, # @ do

7. Sy <0 {set of sorted ready jobs}

8 Sy <« call(getReadyjobs, NULL) {get

Ready Jobs}
9. R <« R + call(zelinquishResources, NULL)
{relinquish resources from done jobs}

10: SBE <« @ {set of clustered jobs

traversal}

11: CBF < 0 {total cost units for Breadth First}
12: SDF < @ f{set of clustered jobs

traversal}

13 CDF < 0 {total cost units for Depth First}
14: call(traverseBF, Sy, CBF,SBF)

150 for each P; € Sy do

16: CSDF <0 {total cost units for
First for single seed}

{set of clustered jobs from
DF traversal for single seed}

{set of sequential

Sorted

from BF

from DF

Depth

17: SSDF — @

Z] go|zalo|YE Y8 adE YAZRS 2AZY AA 7

call(traverseDF, P;, CSDF,SSDF)
SDF < SDF + SSDF
CDF <— CDF + CSDF

end for

if CBF < CDF then
execute SDF'
Sp— S, - SDF

else
Sy, < S, - SBF

end if

: end while

. procedure getReadyJobs()
. for each p € S, do
g < PARENT(p)
e < p— g {e: the edge between p and g}
if STATUS(g) in (done, executing) then
if e € C, && R > 1 then
STATUS(p) < ready

done || OUTPUT AVAILABLE(q) then
STATUS p) < ready
end if
end if
. end for
:return S,

. procedure traverseDF p,CDF,SDF)
Je < {qg: for all p— @ set of all children of p}
. for each ¢ € J. do
if CHILDREM @) # @ then
traverseDF(g, CDF, SDF)
else
1 < allocatelq)
if xthen
51: CDF += c(@) {c: cost unit}
52 SDF < SDF + q
53: R < R - r {remove chosen resource}
54 end if
5% end if
5%: end for

Bexi56E5825884Y

else if e€Cs && R>1 && (STATUS Q)

S

. procedure traverseBF(S,CBF,SBF)
. LBF < {Sg} {LBF set of BF jobs; local variable}
. while LBF # @ do
for each p € LBF do
LBF < LBF + CHILDREN p)
x < allocate(p)
if xthen
CBF += ¢(p) {c:: cost unit}
SBF < SBF +p
R < R - r {remove chosen resource}
end if
end for
end while
. procedure allocate(p)
:if | then
return 0
: end if
: g < PARENT(p) {q parent of p}
. 1 < call(chooseResource pR) {select resource for

8 %

T BRIFGR2ILZS

dEaEIIA

p from R}

3

. return r

Fig. 2. PLScheduler Algorithm

IV. SYSTEM INTERACTION

In Fig. 3, we depicted the information flows of our
system. Each task is scheduled by the PLScheduler
and executes while reading and writing from the
PFS data server. When the output is ready to be
passed on to the following task, the PFS Manager
notifies the PL Scheduler which in turn schedule the
task pipelining. More detailed description of the

system interaction is as follows.

8 W FE A e M (2010, 7)

R 7] v ____
) | Task1 | d PFS PFS
Data |®*®°® Data
FE—— o Server: Servers
) | Task2 | :
o
° 7o
L]
—_—T Monitorin,
) | Taskk | info o

Scheddle pipelining
PL Scheduler

PES Manager

Fig. 3. Information Flow between Components

1. Data Server Registration

Every PFS Data Server should inform the PFS
Manager of its existence. When a PFS Data Server
first starts up, it is initially given the address of the
PFS Manager. With this information, it contacts the
PFS Manager and sends its IP address. Receiving
this information, the PFS Manager inserts an PFS
Data Server entry into the data server list. This list
is used in PFS Data Server selection during file
creation.

2. Job Schedule Triggering

PFS not only acts as a distributed data storage,
but also cooperates with a workflow manager to
realize task pipelining. A typical workflow manager
waits for the current running task to complete after
activating the task. This structure makes
hard to provide task pipelining since the workflow
manager does not launch the next dependent task
even if the current task has already finished its data
writing.

matters

In order to realize this concurrent execution, the

workflow manager should notice the readiness of the

interesting data. However existing workflow
managers cannot determine whether the output file
has ammived or not. In our system, since PFS

manages all the I/O operations of the client, it can
perceive the data arrival that will be provided as an
input to the next task. Therefore, PFS Manager
notifies the workflow manager of the data arrival

after it receives a predefined amount of data which
is consistent throughout the system, which we refer
to as schedule-triggering. For existing workflow
managers, schedule-triggering is a signal that indicates
the readiness of the minimal necessary data. If we
incorporated the PFS and workflow manager in a

single system, schedule-triggering would be noticed

by the workflow manager itself. But we attach
importance to the decoupling of workflow manager
and PES layer, otherwise, PFS layer wil be

dependent on a specific workflow manager, which is
not desirable.

3. Read/Write Pipelining

Applications behave in a traditional way in which
output data and posterior task
them as an input. In a traditional workflow

prior task writes
reads
system, the posterior task cannot execute until the
prior task completes its execution and thus, the
posterior task always sees the completed view of the
the posterior task begins
its execution despite that the prior task is in the
middle of writing the output data, once the
schedule-triggering is delivered by the PFS Manager.
Therefore, the task should
refreshed view whenever the data is appended by
task. It is update the
posterior task’s view whenever the data is Wwritten

data. But in our system,

posterior acquire a

the prior inefficient to
by the prior task. We, therefore, forces the posterior
task to periodically update its view during the read
In this way,
delivered to the posterior task concurrently.

process. prior task's output can be

4. Directory Management

Directory in PFS is a virtual resource maintained
for the user's convenience. Actual directory is stored
in PFS Manager's main memory in a hierarchical
structure like Linux directory structure, so that users
can access the directory in a usual way. Internally,
the directory is a hash table of (logical file name,
directory entries) pairs. file lookup
simple process of retrieving a hash table entry.

Therefore, IS a

2] ol xetold S A3 2= JATES 2AEH A4 9

V. Evaluation

1. Simulator
We implemented a event simulator that mimics
the behavior of two scheduler, GridRod and
PLScheduler. In [17], the indicate that
analyzing the behavior of scheduling models on large
a Grid is
extremely difficult. A couple of reasons are explained
in detail They also developed a
random workflow graph generator. The
takes three parameters to construct the
workflow graph. Firstly, aspect
ratio of breadth vs. depth
specified as a value between 0 and 1. If the value is
0, the depth

streaming factor

authors

and heterogeneous platforms such as
in their paper.
generator
random
ratio defines the
in the graph, and is
of the graph becomes 1. Secondly,
is a probability measure of the
The value
lies between 0 and 1, where in the former setting,
all the edges are sequential edges and all the edges
become edges in the setting. The
streaming factor specifies the degree of the
parallelism that can be achieved.

streaming between workflow components.

parallel latter

Table 1. Parameter values used in the simulation

name value
aspect ratiolar) 02708
streaming factor(sf) 03 07
of resource 10, 20
Finally, number of resources determines how

many resources are supplied in the current setting.
We generated a large number of workflow graphs
varied the
aspect ratio and the streaming factor from 0.2 to 0.8

with various parameter settings. We
in order to show that our algorithm works in various
workflow graphs. We set the number of resources 10
and 20. Also, we assign IO time to each task, which

is extracted with uniform distribution between

9H5-9% of the processing time. For each setting, we
repeated the simulation five times. We averaged and
normalized the running GridRod and
PLScheduler. Table 1 summarizes the
we used in the simulation.

time of

parameters

2. Simulation Result

Table 2. Speedup of PLScheduler compared with GridRod
(# of resources = 10)

ar=02 ar04 ar06 ar-08
s=0.3 2% 18% 1% 30%
s=07 15% 13% 12% 40%

Table 3. Speedup of PLScheduler compared with GridRod
(# of resource = 20)

ar-02 ar-04 ar-06 ar-08
s=0.3 2% 17% 21% 2%%
sf=0.7 13% 10% 13% 35%

In table 2 and 3, we show the speedup of our
scheduling algorithm compared with the GridRod.
In most of the settings, our scheduler outperforms
GridRod up to 40 percent. We
performance improvement

explain this
in two folds - resource

utilization and parallelism maximization. Our
scheduler utilizes resource more efficiently for the
following reasons. If the two jobs can be executed in
parallel and the child node depends on the parent
job, the child job cannot move forward until the
parent job begins writing its output file.

In GridRod, since the scheduler executes both of
the jobs concurrently, the child job will possess the
resource even if the job actually cannot proceed its
execution. On the other hand, in our scheduler, the
child
parent
parallelism maximization, our

job will not occupy the resource until the
In perspective of
scheduler

the child jobs as soon as the output of the parent job

job produces the output.
launches
is available (output of the parent process usually
becomes the input of the child process).

10 R FE MR G200, 7)

REFERENCES

(1] 86, 4ats, "ARaE|=dx HIZ276e] AR

A8 A 3 78 IFAFEARGB=EA, Al 10
A, Al 4%, 166-171%, 2006 9¢.

[2] HSKim and HY.Yeom “A task pipelining framework
for e-science workflow systems,” 3rd workflow
Systems for e-Science(WSES), May 2008,

[3] LY.Jung, IS. Cho, HY.Yeom, HS. Kweon, and
JLee, “HVEM DataGrid Implementation of a
Biologic Data Management System for Experiments
with High Voltage Electron Microscope,” Lecture
Notes in Computer Science, Vol4360, pp175-190,
2006,

[4] Karan Bhatia, Sandeep Chandra, Kurt Mueller.
“GAMA:Grid Account Management Architecture,”
International Conference on e-Science and Grid
Computing(e-Science’05), 2005.

[5] KRanganathan, and IFoster, "Decoupling computation
and data scheduling in distributed data-intensive
applications,” International Symposium on High
Performance Distributed Computing(HPDC), 2002.

[6] TM. McPhillips, and S. Bowers,
for pipelining nested
workflows,” ACM SIGMOD Record, Vol. 34,
No.3, pp.12-17, 2005.

[71 VBhat, SKlasky, S.Atchley,
and MParashar, "High performance threaded
data streaming for large scale simulations,”
IEEE/ACM International ~ Workshop on Grid
Computing, 2004.

[8] JBower, KHanes and Ellewelln "Data streaming,
workflow and firewall-friendly grid services with
Styx,” UK e-Science All Hands
2005.

(91 DAbramson, and JKommineni,”A flexible 10 scheme

International ~ Paralledl &

Arpil

"An approach

collections in scientific

MBeck, D.McCune,

Meeting, Nov.

for grid workflows,”
Distributed ~ Processing ~ Symposium(IPDPS),
2004.

[10] VKokhov, DVasyunin, AWhison, ASBdlam MA
Inda, MRoos, TMBreit, and LHertzberger, "VLAM-

Glnteractive data driven workflow engine for
grid-enabled resources,” Joumal of Sdentific
Progranming, Vol.15, No.3, pp173-188, 2007.

[11] AMandal, KKennedy, CKoelbel, G.Marin,
J Mellor-Crummey, B.Liy, and L.Johnsson,
"Scheduling ~ strategies for mapping application

workflows onto the grid” 14th IEEE International
Symposium on High Performance Distributed
Computing(HPDC), July 2005.

[12] Shdic, DFdic, and CHemi,
task scheduling to heterogeneous mixed parallel
scheduling,” International Euro-Par Conference.
2008.

[13] oI, o7, He

"From heterogeneous

ﬂc 7&%‘% §‘r7ﬂ°ﬂ/‘1 3

(4] BrEA, AAS, 2118, o4, “AdaE=s 9 9
AzA e TR)E Az v dRAHEY
AR =FA, A 1279, A 55 49-56%, 2007
14

[15] JYu, and RBuyy,

systems for grid

“A taxonomy of workflow
computing,”
3, No. 344,

management
Jounal of Grid Computing, Vol
pp.171-200, Sep. 2005.

[16] S.Ayyub, and D.Abramson, "GridRod- a dynamic
runtime scheduler for gnd workflows,” International

2007, June

Supercomputing ~ Conference(ISC)
2007.

N A2 Y

Inseon Lee is an Assistant Professor
with the Dept. of Computer
Information Processing,
Shingu University. She
received her BS. from
SNU in 1987, a Master's
from KAIST in 196 and
Ph.D from SNU in 2003 all

in computer science.
Recently, her research
interests are grid and cloud
computing..

