DOI QR코드

DOI QR Code

Protective effects of carnosine and homocarnosine on ferritin and hydrogen peroxide-mediated DNA damage

  • Received : 2010.08.06
  • Accepted : 2010.08.23
  • Published : 2010.10.31

Abstract

Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with $H_2O_2$. The results show that carnosine and homocarnosine prevented ferritin/$H_2O_2$-mediated DNA strand breakage. These compounds effectively inhibited ferritin/$H_2O_2$-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin/$H_2O_2$ reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.

Keywords

References

  1. Knovich, M. A., Storey, J. A., Coffman, L. G., Torti, S. V. and Torti, F. M. (2009) Ferritin for the clinician. Blood Rev. 23, 95-104. https://doi.org/10.1016/j.blre.2008.08.001
  2. Monterio, H., Ville, G. and Winterbourn, C. (1989) Release of iron from ferritin by semiquinone, anthracycline, bipyridyl, and nitroaromatic radicals. Free Radic. Biol. Med. 6, 587-591. https://doi.org/10.1016/0891-5849(89)90065-8
  3. Lapenna, D., de Gioia, S., Mezzetti, A., Ciofani, G., Consoli, A., Marzio, L. and Cuccurullo, F. (1995) Cigarette smoke, ferritin, and lipid peroxidation. Am. J. Respir. Crit. Care Med. 151, 431-435. https://doi.org/10.1164/ajrccm.151.2.7842202
  4. Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K. and Youdim, M. B. (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen-their mutual interactions and possible implication in the development of Parkinson's disease. Biochim. Biophys. Acta. 1316, 160-168. https://doi.org/10.1016/0925-4439(96)00020-8
  5. Double, K. L., Maywald, M., Schmittle, M., Riederer, P. and Gerlach, M. (1998) In vitro studies of ferritin iron release and neurotoxicity. J. Neurochem. 70, 2492-2499. https://doi.org/10.1046/j.1471-4159.1998.70062492.x
  6. Monterio, H. and Winterbourn, C. (1988) The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. Biochem. J. 256, 923-928. https://doi.org/10.1042/bj2560923
  7. Boyer, R., Grabill, T. and Petrovich, R. (1988) Reductive release of ferritin iron: a kinetic assay. Anal. Biochem. 174, 17-22. https://doi.org/10.1016/0003-2697(88)90513-1
  8. Halliwell, B. and Gutteridge, J. M. (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  9. Gotz, E., Kunig, G., Riderer, P. and Youdim, M. B. (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. 63, 37-122. https://doi.org/10.1016/0163-7258(94)90055-8
  10. Hyslop, P. A., Zhang, Z., Pearson, D. V. and Phebus, L. A. (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of $H_2O_2$ in vitro. Brain Res. 671, 181-186. https://doi.org/10.1016/0006-8993(94)01291-O
  11. Gius, D. and Spitt, D. R. (2006) Redox signaling in cancer biology. Antioxid. Redox. Signal. 8, 1249-1252. https://doi.org/10.1089/ars.2006.8.1249
  12. Behl, C., Davis, J. B., Lesley, R. and Schubert, D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77. 817-827. https://doi.org/10.1016/0092-8674(94)90131-7
  13. Hipkiss, A. R. (1998) Carnosine, a protective, anti-ageing peptide. Int. J. Biochem. Cell Biol. 30, 863-868. https://doi.org/10.1016/S1357-2725(98)00060-0
  14. Alhamdani, M. S., Al-Kassir, A. H., Abbas, F. K., Jaleel, N. A. and Al-Taee, M. F. (2007) Antiglycation and anti-oxidant effect of carnosine against glucose degradation products in peritoneal mesothelial cells. Nephron. Clin. Pract. 107, c26-34. https://doi.org/10.1159/000106509
  15. Decker, E. A., Livisay, S. A. and Zhou, S. (2000) A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc) 65, 766-770.
  16. Boldyrev, A., Bulygina, E., Leinsoo, T., Petrushanko, I., Tsubone, S. and Abe, H. (2004) Protection of neuronal cells aginst reactive oxygen species by carnosine and related compounds. Comp. Biochem. Physiol. 137, 81-88. https://doi.org/10.1016/j.cbpc.2003.10.008
  17. Fu, Q., Dai, H., Hu, W., Fan, Y., Shenn, Y., Zhang, W. and Chen, Z. (2008) Carnosine protects against Abeta41-induced neurotoxicity in differentiated rat PC12 cells. Cell Mol. Neurobiol. 28, 307-316 https://doi.org/10.1007/s10571-007-9235-0
  18. Lowery Jr. T. J., Bunker, J., Zhang, B., Costen, R. and Watt, G. D. (2004) Kinetic studies of iron deposition in horse spleen ferritin using $H_2O_2$ and $O_2$ as oxidants. Biophys. Chem. 111, 173-181 https://doi.org/10.1016/j.bpc.2004.05.008
  19. Zastawny, T. H., Altman, S. A., Randers-Eichhorn, L., Madurawe, R., Lumpkin, J. A., Dizdaroglu, M. and Rao, G. (1995) DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions. Free Radic. Biol. Med. 18, 1013-1022. https://doi.org/10.1016/0891-5849(94)00241-B
  20. Helbock, H. J., Beckman, K. B. and Ames, B. N. (1999) 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol. 300, 156-166. https://doi.org/10.1016/S0076-6879(99)00123-8
  21. Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89, 245-250. https://doi.org/10.1016/0305-0491(88)90218-0
  22. Auroma, O. I., Laughton, M. J. and Halliwell, B. (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264, 863-869. https://doi.org/10.1042/bj2640863
  23. Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256. https://doi.org/10.1016/0022-5193(81)90073-4
  24. Decker, E. A., Crum, A. D. and Calvert, J. T. (1992) Differences in the Antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40, 756-759. https://doi.org/10.1021/jf00017a009
  25. Aldini, G., Carini, M., Beretta, G., Bradamante, S. and Facino, R. M. (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction. Biochem. Biophys. Res. Commun. 298, 699-706. https://doi.org/10.1016/S0006-291X(02)02545-7
  26. Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352. https://doi.org/10.1016/0014-5793(81)80114-7
  27. Boveries, A., Oshino, N. and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128, 617-630. https://doi.org/10.1042/bj1280617
  28. Imlay, J. A. and Fridovich, I. (1991) Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266, 6957-6965.
  29. Turrens, J. F., Beoni, M., Brilla, J., Chavez, U. B. and McCord, J. M., (1991) Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free. Radic. Res. Comms. 12-13, 681-689.
  30. D’Agostino, D. P., Olson, J. E. and Dean, J. B. (2009) Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells. Neuroscience 159, 1011-1022. https://doi.org/10.1016/j.neuroscience.2009.01.062
  31. McBride, T. J., Preston, B. D. and Loeb, L. A. (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30, 207-213. https://doi.org/10.1021/bi00215a030
  32. Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179. https://doi.org/10.1073/pnas.85.9.3175
  33. Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR-spin trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42, 1407-1410. https://doi.org/10.1021/jf00043a003

Cited by

  1. Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation vol.96, pp.2, 2015, https://doi.org/10.1111/mmi.12938
  2. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats vol.53, pp.8, 2016, https://doi.org/10.1007/s12035-015-9475-9
  3. Chemoprotective effects of carnosine against genotoxicity induced by cyclophosphamide in mice bone marrow cells vol.30, pp.7, 2012, https://doi.org/10.1002/cbf.2834
  4. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury vol.67, 2014, https://doi.org/10.1016/j.freeradbiomed.2013.10.815
  5. Administration of carnosine in the treatment of acute spinal cord injury vol.82, pp.10, 2011, https://doi.org/10.1016/j.bcp.2011.07.074
  6. Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice vol.46, pp.9, 2014, https://doi.org/10.1111/and.12193
  7. Efficient lung orthotopic tumor-growth suppression of oncolytic adenovirus complexed with RGD-targeted bioreducible polymer vol.21, pp.5, 2014, https://doi.org/10.1038/gt.2014.18
  8. Carnosine and its (S)-Trolox™ derivative protect animals against oxidative stress vol.43, pp.1, 2012, https://doi.org/10.1007/s00726-012-1256-4
  9. Increased manganese superoxide dismutase and cyclin B1 expression in carnosine-induced inhibition of glioblastoma cell proliferation vol.9, pp.1, 2015, https://doi.org/10.1134/S1990750815010096
  10. Enhanced antitumor immunotherapeutic effect of B-cell-based vaccine transduced with modified adenoviral vector containing type 35 fiber structures vol.21, pp.1, 2014, https://doi.org/10.1038/gt.2013.65
  11. l-Homocarnosine, l-carnosine, and anserine attenuate brain oxidative damage in a pentylenetetrazole-induced epilepsy model of ovariectomized rats vol.8, pp.8, 2018, https://doi.org/10.1007/s13205-018-1357-1