DOI QR코드

DOI QR Code

The Etching Properties of Indium Tin Oxide Thin Films in O2/BCl3/Ar Gas Mixture Using Inductively Coupled Plasma

유도결합플라즈마를 이용한 O2/BCl3/Ar가스에 따른 Indium Tin Oxide 박막의 식각 특성 연구

  • Wi, Jae-Hyung (Department of Renewable Energy, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 위재형 (중앙대학교 재생에너지학과) ;
  • 우종창 (중앙대학교 전자전기공학부) ;
  • 김창일 (중앙대학교 전자전기공학부)
  • Received : 2010.07.14
  • Accepted : 2010.09.20
  • Published : 2010.10.01

Abstract

The etching characteristics of indium tin oxide (ITO) thin films in an $O_2/BCl_3/Ar$ plasma were investigated. The etch rate of ITO thin films increased with increasing $O_2$ content from 0 to 2 sccm in $BCl_3$/Ar plasma, whereas that of ITO decreased with increasing $O_2$ content from 2 sccm to 6 sccm in $BCl_3$/Ar plasma. The maximum etch rate of 65.9 nm/m in for the ITO thin films was obtained at 2 sccm $O_2$ addition. The etch conditions were the RF power of 500 W, the bias power of 200 W, the process pressure of 15 mTorr, and the substrate temperature of $40^{\circ}C$. The analysis of x-ray photo electron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of ITO thin films and etch species.

Keywords

References

  1. D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films 515, 1364 (2006). https://doi.org/10.1016/j.tsf.2006.03.040
  2. H. C. An, S. H. Na, H. W. Joo, and T. W. Kim, Trans. Electr. Electron. Mater. 10, 28 (2009). https://doi.org/10.4313/TEEM.2009.10.1.028
  3. C. J. Huang, Y. K. Su, and S. L. Wu, Mater. Chem. Phys. 84, 146 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.021
  4. M. Mohri, H. Kakinuma, M. Sakamoto, and H. Sawai, Jpn. J. Appl. Phys. 29, 1932 (1990). https://doi.org/10.1143/JJAP.29.1932
  5. A. Grigonis, R. Knizikevicius, Z. Rutkuniene, and D. Tribandis, Vacuum 70, 319 (2003). https://doi.org/10.1016/S0042-207X(02)00662-0
  6. K. Odagawa, N. Yanagawa, and M. Sadamoto, IEEJ. Trans. Mater. 123, 185 (2003). https://doi.org/10.1541/ieejfms.123.185
  7. R. J. Saia, R. F. Kwasnick, and C. Y. Wei, J. Electrochem. Soc. 138, (1991) 493. https://doi.org/10.1149/1.2085616
  8. K. H. Lee, H. W. Jang, K. B. Kim, Y. H. Tak, and J. L. Lee, J. Appl. Lett. 95, (2004) 586.
  9. J. S. Kim, F. Cacialli, and R. Friend, Thin Solid Films 445, 358 (2003). https://doi.org/10.1016/S0040-6090(03)01185-4
  10. W. R. Salaneck, N. Johansson, K. Z. Xing, F. Cacialli, R. H. Friend, G. Beamson, and D. T. Clark, Synth. Met. 92, 207 (1998). https://doi.org/10.1016/S0379-6779(98)80088-X
  11. C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, Langmuir 18, 450 (2002). https://doi.org/10.1021/la011101t