DOI QR코드

DOI QR Code

Comparison of Trend Tests for Genetic Association with Sibship Data

형제 자료에 근거한 유전연관성 추세 검정법의 비교

  • Oh, Young-Sin (Department of Biostatistics, Graduate School, The Catholic University of Korea) ;
  • Kim, Han-Sang (Department of Biostatistics, Graduate School, The Catholic University of Korea) ;
  • Son, Hae-Hiang (Department of Biostatistics, Graduate School, The Catholic University of Korea)
  • 오영신 (가톨릭대학교 대학원 의학통계학과) ;
  • 김한상 (가톨릭대학교 대학원 의학통계학과) ;
  • 송혜향 (가톨릭대학교 대학원 의학통계학과)
  • Received : 20100500
  • Accepted : 20100800
  • Published : 2010.10.31

Abstract

Extensively used case-control designs in medical studies can also be powerful and efficient for family association studies as long as an analysis method is developed for the evaluation of association between candidate genes and disease. Traditional Cochran-Armitage trend test is devised for independent subjects data, and to apply this trend test to the biologically related siblings one has to take into account the covariance among related family members in order to maintain the correct type I error rate. We propose a more powerful trend test by introducing weights that reflect the number of affected siblings in families for the evaluation of the association of genetic markers related to the disease. An application of our method to a sample family data, in addition to a small-scale simulation, is presented to compare the weighted and unweighted trend tests.

의학의 여러 분야의 연관성 연구에서 효율성이 높은 방법으로 채택되고 있는 질병-대조 연구계획을 다수 형제 자료에 근거한 유전연관성 연구에 적용하기 위해서는 가족 자료에 근거한 추세 검정통계량이 요구된다. 독립된 개체에 적용하는 Cochran-Armitage 추세 검정통계량은 가족 자료의 경우 제 1종 오류가 보장되지 않으며, 동일 가족의 다수 형제 자료로 인한 공분산을 감안한 추세 검정통계량이 제시되어야 한다. 본 논문에서는 특히 동일 가족의 질병형제수에 따른 가중을 도입하여 질병과 관련된 마커좌위에서의 유전자형 자료가 수집되는 경우에 검정력이 더욱 높게 되는 검정통계량을 제안한다. 예제 가족 자료로 가중을 고려한 경우와 고려하지 않은 경우의 검정통계량을 계산하여 비교한다.

Keywords

References

  1. Armitage, P. (1955). Tests for linear trends in proportions and frequencies, Biometrics, 11, 375-386. https://doi.org/10.2307/3001775
  2. Breslow, N. E. (1996). Statistics in epidemiology: The case-control study, Journal of the American Statistical Association, 91, 14-28. https://doi.org/10.2307/2291379
  3. Cochran, W. G. (1954). Some methods for strengthening the common chi-squared test, Biometrics, 10, 417-451. https://doi.org/10.2307/3001616
  4. Fingerlin, T. E., Boehnke, M. and Abecasis, G. R. (2004). Increasing the power and efficiency of diseasemarker case-control association studies through use of allele-sharing information, American Journal of Human Genetics, 74, 432-443. https://doi.org/10.1086/381652
  5. Gauderman, W. J., Witte, J. S. and Thomas, D. C. (1999). Family-based association studies, Journal of the National Cancer Institute Monographs, 26, 31-37.
  6. Kerber, R. A., Amos, C. I., Yeap, B. Y., Finkelstein, D. M. and Thomas, D. C. (2008). Design considerations in a sib-pair study of linkage for susceptibility loci in cancer, BMC Medical Genetics, 9, 64. https://doi.org/10.1186/1471-2350-9-64
  7. Li, C. C. and Sacks, L. (1954). The derivation of joint distribution and correlation between relatives by the use of stochastic matrices, Biometrics, 10, 347-360. https://doi.org/10.2307/3001590
  8. Li, M., Boehnke, M. and Abecasis, G. R. (2006). Efficient study designs for test of genetic association using sibship data and unrelated cases and controls, American Journal of Human Genetics, 78, 778-792. https://doi.org/10.1086/503711
  9. Monks, S. A., Kaplan, N. L. and Weir, B. S. (1998). A comparative study of sibship tests of linkage and/or association, American Journal of Human Genetics, 63, 1507-1516. https://doi.org/10.1086/302104
  10. Moore, R. M., Pinel, T., Zhao, J. H., March, R. and Jawaid, A. (2005). Selecting cases from nuclear families for case-control association analysis, BMC Genetics, 6(Suppl I), S105. https://doi.org/10.1186/1471-2156-6-S1-S105
  11. Risch, N. (2000). Searching for genetic determinants in the new millennium, Nature, 405, 847-856. https://doi.org/10.1038/35015718
  12. Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human disease, Science, 273, 1516-1517. https://doi.org/10.1126/science.273.5281.1516
  13. Risch, N. and Teng, J. (1998). The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases. I. DNA pooling, Genome Research, 8, 1273-1288. https://doi.org/10.1101/gr.8.12.1273
  14. Slager, S. L. and Schaid, D. J. (2001). Evaluation of candidate genes in case-control studies: A statistical method to account for related subjects, American Journal of Human Genetics, 68, 1457-1462. https://doi.org/10.1086/320608
  15. Yates, F. (1948). The analysis of contingency tables with groupings based on quantitative characters, Biometrika, 35, 176-181. https://doi.org/10.1093/biomet/35.1-2.176

Cited by

  1. Comparison of the Family Based Association Test and Sib Transmission Disequilibrium Test for Dichotomous Trait vol.23, pp.6, 2010, https://doi.org/10.5351/KJAS.2010.23.6.1103