DOI QR코드

DOI QR Code

Effect of Surface Morphology in ZnO:Al/Ag Back Reflectors for Flexible Silicon Thin Film Solar Cells on Light Scattering Properties

플렉서블 실리콘 박막 태양전지용 ZnO:Al/Ag 후면반사막의 표면형상에 따른 광산란 특성 변화

  • Beak, Sang-Hun (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Lee, Jeong-Chul (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Park, Sang-Hyun (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Song, Jin-Soo (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Yoon, Kyung-Hoon (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Wang, Jin-Suk (Dept. Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Dept. Electronics Engineering, Chungnam National University) ;
  • Cho, Jun-Sik (Photovoltaic Research Center, Korea Institute of Energy Research)
  • 백상훈 (한국에너지기술연구원 태양광연구단) ;
  • 이정철 (한국에너지기술연구원 태양광연구단) ;
  • 박상현 (한국에너지기술연구원 태양광연구단) ;
  • 송진수 (한국에너지기술연구원 태양광연구단) ;
  • 윤경훈 (한국에너지기술연구원 태양광연구단) ;
  • 왕진석 (충남대학교, 전자전파정보통신공학과) ;
  • 이희덕 (충남대학교, 전자전파정보통신공학과) ;
  • 조준식 (한국에너지기술연구원 태양광연구단)
  • Received : 2010.08.30
  • Accepted : 2010.09.17
  • Published : 2010.10.27

Abstract

Changes in surface morphology and roughness of dc sputtered ZnO:Al/Ag back reflectors by varying the deposition temperature and their influence on the performance of flexible silicon thin film solar cells were systematically investigated. By increasing the deposition temperature from $25^{\circ}C$ to $500^{\circ}C$, the grain size of Ag thin films increased from 100 nm to 1000 nm and the grain size distribution became irregular, which resulted in an increment of surface roughness from 6.6 nm to 46.6 nm. Even after the 100 nm thick ZnO:Al film deposition, the surface morphology and roughness of the ZnO:Al/Ag double structured back reflectors were the same as those of the Ag layers, meaning that the ZnO:Al films were deposited conformally on the Ag films without unnecessary changes in the surfacefeatures. The diffused reflectance of the back reflectors improved significantly with the increasing grain size and surface roughness of the Ag films, and in particular, an enhanced diffused reflectance in the long wavelength over 800 nm was observed in the Ag back reflectors deposited at $500^{\circ}C$, which had an irregular grain size distribution of 200-1000 nm and large surface roughness. The improved light scattering properties on the rough ZnO:Al/Ag back reflector surfaces led to an increase of light trapping in the solar cells, and this resulted in a noticeable improvement in the $J_{sc}$ values from 9.94 mA/$cm^2$ for the flat Ag back reflector at $25^{\circ}C$ to 13.36 mA/$cm^2$ for the rough one at $500^{\circ}C$. A conversion efficiency of 7.60% ($V_{oc}$ = 0.93, $J_{sc}$ = 13.36 mA/$cm^2$, FF = 61%) was achieved in the flexible silicon thin film solar cells at this moment.

Keywords

References

  1. J. Yang, A. Banerjee and S. Guha, Appl. Phys. Lett., 70, 2975 (1997). https://doi.org/10.1063/1.118761
  2. J. K. Rath, M. Brinza, Y. Liu, A. Borreman and R.E.I. Schropp, Sol. Energ. Mater. Sol. Cell., 94, 1534 (2010). https://doi.org/10.1016/j.solmat.2010.01.013
  3. M. Pagliaro, R. Ciriminna and G. Palmisano, Flexible Solar Cells, p.1-5, Willey-Vch GmbH & Co, Weinheim (2008).
  4. F. J. Haug, T. Soderstrom, M. Python, V. T. Daudrix, X. Niquille and C. Ballif, Sol. Energ. Mater. Sol. Cell., 93, 884 (2009). https://doi.org/10.1016/j.solmat.2008.10.018
  5. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres and A. Shah, J. Appl. Phys., 88, 148 (2000). https://doi.org/10.1063/1.373635
  6. Y. J. Kim, J. S. Cho, J. C. Lee, J. S. Wang, J. S. Song and K. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.5.245
  7. C. Heine and R. H. Morf, Appl. Optic., 34, 2476 (1995). https://doi.org/10.1364/AO.34.002476
  8. H. Stiebig, C. Haase, C. Zahren, B. Rech and N. Senoussaoui, J. Non-Cryst. Solids, 352, 1949 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.072
  9. D. Zhou and R. Biswas, J. Appl. Phys., 103, 093102 (2008). https://doi.org/10.1063/1.2908212
  10. J. A. Thornton Annu. Rev. Mater. Sci., 7, 239 (1977). https://doi.org/10.1146/annurev.ms.07.080177.001323
  11. C. R. M. Grovenor, H. T. G. Hentzell and D. A. Smith, Acta Metall., 32, 773 (1984). https://doi.org/10.1016/0001-6160(84)90150-0
  12. D. A. Smith and A. Ibrahim, Mater. Res. Soc. Symp. Proc., 317, 401 (1994).
  13. J. A. Thorton, J. Vac. Sci. Technol., A 4, 3059 (1986).
  14. I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, J. Vac. Sci. Technol., A 21, S117 (2003).
  15. A. Banerjee and S. Guha, J. Appl. Phys., 69, 1030 (1991). https://doi.org/10.1063/1.347418
  16. A. Liebsch, Phys. Rev. Lett., 71, 145 (1993). https://doi.org/10.1103/PhysRevLett.71.145
  17. T. Soderstrom, F. J. Haug, X. Niquille, V. Terrazzoni and C. Ballif, Appl. Phys. Lett., 94, 063501 (2009). https://doi.org/10.1063/1.3079414
  18. J. Escarre, F. Villar, J. M. Asensi, J. Bertomeu and J. Andreu, J. Non-Cryst. Solids, 352, 1896 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.046