DOI QR코드

DOI QR Code

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials

직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구

  • Kim, Hyun-Cheol (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2010.09.16
  • Accepted : 2010.09.27
  • Published : 2010.10.27

Abstract

There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

Keywords

References

  1. G. Frank and H. Kostlin, Appl. Phys. A, 27, 197 (1982). https://doi.org/10.1007/BF00619080
  2. H. Kim, J. S. Horowitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi and D. B. Chrisey, Thin Solid Films, 420, 539 (2002). https://doi.org/10.1016/S0040-6090(02)00836-2
  3. V. V. Simakov, O. V. Yakusheva, A. I. Grebennikov and V. V. Kisin, Tech. Phys. Lett., 31, 339 (2005). https://doi.org/10.1134/1.1920390
  4. B. Houng, Appl. Phys. Lett., 87, 251922 (2005). https://doi.org/10.1063/1.2149223
  5. X. Dai and R. G. Compton, Anal. Sci., 22, 567 (2006). https://doi.org/10.2116/analsci.22.567
  6. B. Shan, G. W. Lakatos, S. Peng and K. Cho, Appl. Phys. Lett., 87, 173109 (2005). https://doi.org/10.1063/1.2067697
  7. C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, J. Solid State Chem., 100, 272 (1992). https://doi.org/10.1016/0022-4596(92)90101-Z
  8. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai, Science, 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  9. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith Jr., L. Echegoyen, D. L. Carroll, S. H. Foulger and J. Ballato, Adv. Mater., 14, 1480 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O
  10. J. Jeon, J. Choi, K. Moon, T. I. Lee, H. Moon, H. Y. Kim and J.-M. Myoung, Kor. J. Mater. Res., 20(2), 51 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.2.51
  11. H. H. Park, H. H. Park and R. H. Hill, Sensor. Actuator. Phys., 132, 429 (2006). https://doi.org/10.1016/j.sna.2006.02.030
  12. G. Rodriguez-Gattorno, D. Diaz, L. Rendon and G. O. Hernandez-Segura, J. Phys. Chem. B., 106, 2482 (2002). https://doi.org/10.1021/jp012670c
  13. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger and J. Ballato, Adv. Mater., 14, 1480 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O
  14. H. W. Lina, W. H. Hwu and M. D. Ger, J. Mater. Process. Tech., 206, 56 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.025
  15. Z. Jiang, W. Yuan and H. Pan, Spectrochim. Acta. Mol. Biomol. Spectros., 61, 2488 (2005). https://doi.org/10.1016/j.saa.2004.09.014
  16. Joint Committee for Powder Diffraction Studies (JCPDS) No. 70-4177.
  17. L. L. Diaz-Flores, R. Ramirez-Bon, A. Mendoza-Galvan, E. Prokhorov and J. Gonzalez-Hernandez, J. Phys. Chem. Solid., 64, 1037 (2003). https://doi.org/10.1016/S0022-3697(02)00476-6
  18. M. Krunks and E. Mellikov, Thin Solid Films, 270, 33 (1995). https://doi.org/10.1016/0040-6090(95)06893-7
  19. S. W. Xue, X. T. Zu, W. L. Zhou, H. X. Deng, X. Xiang, L. Zhang and H. Deng, J. Alloy. Compd., 448, 21 (2008). https://doi.org/10.1016/j.jallcom.2006.10.076
  20. S. Wang, S. Boussaad and N. J. Tao, Rev. Sci. Instrum., 72, 3055 (2001). https://doi.org/10.1063/1.1379604
  21. E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, Thin Solid Films, 71, 237 (1980). https://doi.org/10.1016/0040-6090(80)90160-1
  22. K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102, 1 (1983). https://doi.org/10.1016/0040-6090(83)90256-0
  23. H. Kim, S. J. Wang, H. H. Park, H. J. Chang, H. Jeon and R. H. Hill, Thin Solid Films, 516, 198 (2007). https://doi.org/10.1016/j.tsf.2007.07.003
  24. H. Kim, H. H. Park, H. J. Chang, H. Jeon and H. H. Park, Thin Solid Films, 517, 1072 (2008). https://doi.org/10.1016/j.tsf.2008.06.031
  25. E. Itoh, M. Iwamoto, M. Burghard and S. Roth, Jpn. J. Appl. Phys., 39, 5146 (2000). https://doi.org/10.1143/JJAP.39.5146