DOI QR코드

DOI QR Code

Hydrothermal Synthesis and Mechanical Characterization of ZrO2 by Y2O3 Stabilizer Contents

Y2O3안정화제 첨가량에 따라 수열합성법으로 제조된 ZrO2-Xmol% Y2O3분말의 합성 및 기계적 특성

  • Lee, Hak-Joo (Department of Materials Science and Engineering, Paichai University) ;
  • Kim, Taik-Nam (Department of Information and Electronic Materials Engineering, Paichai University) ;
  • Bea, Sung-Chul (Department of Information and Electronic Materials Engineering, Paichai University) ;
  • Go, Myung-Won (Department of Dental lab. Technology, Kwamng Yang Health College University) ;
  • Ryu, Jae-Kyung (Department of Dental Technology, Shinheung College University)
  • 이학주 (배재대학교대학원 재료공학과) ;
  • 김택남 (배재대학교 정보전자소재공학과) ;
  • 배성철 (배재대학교 정보전자소재공학과) ;
  • 고명원 (광양보건대학 치기공과) ;
  • 류재경 (신흥대학 치기공과)
  • Received : 2010.09.01
  • Accepted : 2010.10.04
  • Published : 2010.10.27

Abstract

In this study, partially stabilized zirconia was synthesized using a chemical $Y_2O_3$ stabilizer and hydrothermal method. First, $YCl_3-6H_2O$ and $ZrCl_2O-8H_2O$ was dissolved in distilled water. Y-TZP (a $Y_2O_3$-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of $NH_4OH$ solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove $Cl^-$ ions. $ZrO_2$-Xmol%$Y_2O_3$ powder was synthesized by a hydrothermal method using Teflon Vessels at $180^{\circ}C$ for 6 h of optimized condition. The powder added with the Xmol%- $Y_2O_3$ (X = 0,1,3,5 mol%) stabilizer of the $ZrO_2$ was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of $33mm{\times}8mm{\times}3$ mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% $Y_2O_3$. The $3Y-ZrO_2$ agglomerated particle size was measured at $7.01{\mu}m$. The agglomerated particle was clearly observed in the sample of 5 mol % $Y_2O_3-ZrO_2$, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% $Y_2O_3-ZrO_2$. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% $Y_2O_3-ZrO_2$.

Keywords

References

  1. F. F. Lange, J. Mater. Sci., 17, 225 (1982). https://doi.org/10.1007/BF00809057
  2. R. C. Garvie, J. Phys. Chem., 69(4) , 1238 (1965). https://doi.org/10.1021/j100888a024
  3. P. Kundu, D. Pal and S. Sen, J. Mater. Sci., 23, 1539 (1988). https://doi.org/10.1007/BF01115688
  4. G. Dell'Agli and G. Mascolo, J . Eur. Ceram. Soc.. 20, 139 (2000). https://doi.org/10.1016/S0955-2219(99)00151-X
  5. F. F Lange, H. Shubert, N. Claussen and M. Ruhle, J. Mater. Sci., 21, 768 (1986). https://doi.org/10.1007/BF01117352
  6. T. K. Gupta, F. F. Lange and J. H. Bechtold, J. Mater. Sci., 13, 1464 (1978). https://doi.org/10.1007/BF00553200
  7. T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk and L. Marion, Dent. Mater. 15, 426 (1999). https://doi.org/10.1016/S0109-5641(99)00070-6
  8. J. H. Lee and J. H. Song, Journal of the Korea Research Society for Dental Materials, 36, 109 (2009) (in Korean) (ISSN: 1225-1631).
  9. Y. Hirata, M. Nakamura, M. Miyamoto, Y. Tanaka and, X. H. Wang, J. Am. Ceram. Soc., 89(6), 1883 (2006). https://doi.org/10.1111/j.1551-2916.2006.01046.x
  10. H. Kumazawa, T. Inoue and E. Sada, Chem. Eng. J. Biochem. Eng. J., 55, 93 (1994). https://doi.org/10.1016/0923-0467(94)87011-X
  11. W. Pyda, K. Haberko and M. M. Bucko, J. Am. Ceram. Soc., 74(10), 2622 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06810.x
  12. H. Nishzawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, J. Am. Ceram. Soc., 65(7), 343 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
  13. E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc., 64(12), C-181 (1981).
  14. E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc., 66(1), 11 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb09958.x
  15. M. Dechamps, B. Djuriciae and S. Pickering, J. Am. Ceram. Soc.. 78(11), 2873 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09058.x
  16. K. Matusui, H. Suzuki, M. Ohagi and H. Arashi, J. Am. Ceram. Soc., 78(1), 146 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08374.x
  17. F. F Lange, J. Am. Ceram. Soc., 69(3), 240 (1982). https://doi.org/10.1111/j.1151-2916.1986.tb07416.x
  18. J. Wang, L. S. Ee, S. C. Ng, C. H. Chew and L. M. Gan., Mater. Lett., 30, 119 (1997). https://doi.org/10.1016/S0167-577X(96)00181-4
  19. T. Masaki, J. Am. Ceram. Soc., 69(8), 638 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb04823.x
  20. K. Tsukuma, Y. Kubota, and T. Tsukidate, Advances in Ceramics 12 , Science and Technology of Zirconia II, (American Ceramic Society, Columbus, Ohio, 1984) edited by N. Claussen, M. Ruhie, and A. H, Heuer, p. 382.

Cited by

  1. by Urea Contents vol.21, pp.8, 2011, https://doi.org/10.3740/MRSK.2011.21.8.425