DOI QR코드

DOI QR Code

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Kim, Jong-Gyu (Hanil Green Tech Co, Ltd) ;
  • Kim, Hyuk (Hanil Green Tech Co, Ltd) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 투고 : 2010.08.14
  • 심사 : 2010.10.06
  • 발행 : 2010.10.27

초록

In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.

키워드

참고문헌

  1. A. Fujishima, K. Hashimoto and T. Watanabe, $TiO_2$ photocatalysis : Photocatalysis Fundamentals and Applications, BKC, Tokyo (1999).
  2. E. Piera, M. I. Tejedor, M. E. Zorn and M. A. Anderson, Appl. Catal. B Environ., 47, 219 (2004). https://doi.org/10.1016/j.apcatb.2003.09.010
  3. I. K. Konstantinou and T. A. Albanis, Appl. Catal. B Environ., 42, 319 (2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  4. D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjines, F. Levy and V. I. Parvulescu, Appl. Catal. B Environ., 25, 83 (2000). https://doi.org/10.1016/S0926-3373(99)00123-X
  5. T. Yuranova, R. Mosteco, J. Bandara, D. Laub and J. Kiwi, J. Mol. Catal. Chem., 244, 160 (2006). https://doi.org/10.1016/j.molcata.2005.08.059
  6. X. Zhang, M. Zhou and L. Lei, Carbon, 44, 325 (2006). https://doi.org/10.1016/j.carbon.2005.07.033
  7. X. -Y. Chuan, M. Hirano and M. Inagaki, Appl. Catal. B Environ., 51, 255 (2004). https://doi.org/10.1016/j.apcatb.2004.03.004
  8. B. Sanchez, J. M. Coronado, R. Candal, R. Portela, I. Tejedor, M. A. Anderson, D. Tompkins and T. Lee, Appl. Catal. B Environ., 66, 295 (2006). https://doi.org/10.1016/j.apcatb.2006.03.021
  9. W. C. Ying, in Proceedings of the 44th Purdue Industrial Waste Conference (Chelsea MI, 1989) p. 313-324.
  10. W. C. Ying, E. A. Dietz and G. C. Woehr, Environ. Progr., 9, 1 (1990). https://doi.org/10.1002/ep.670090111
  11. J. B. Yang, L. C. Ling, L. Liu, F. Y. Kang, Z. H. Huang and H. Wu, Carbon, 40, 911 (2002). https://doi.org/10.1016/S0008-6223(01)00222-6
  12. Z. Liu, L. Ling, W. Qiao and L. Liu, Carbon, 37, 663 (1999). https://doi.org/10.1016/S0008-6223(98)00242-5
  13. G. Gryglewicz, K. Grabas and E. Lorenc-Grabowska, Carbon, 40, 2403(2002). https://doi.org/10.1016/S0008-6223(02)00119-7
  14. H. Nakagawa, K. Watanabe, Y. Harada and K. Miura, Carbon, 37, 1455 (1999). https://doi.org/10.1016/S0008-6223(99)00008-1
  15. V. M. Gun’ko, R. Leboda, J. Skubiszewska-Zieba, B. Charmas and P. Oleszczuk, Carbon, 43, 1143 (2005). https://doi.org/10.1016/j.carbon.2004.09.032
  16. E. M. Zippi and G. W. Kabalka, Carbon, 34, 1539 (1996). https://doi.org/10.1016/S0008-6223(96)00101-7
  17. M. Kocirik, J. Brych and J. Hradil, Carbon, 39, 1919 (2001). https://doi.org/10.1016/S0008-6223(00)00326-2
  18. K. Zhang, Z. D. Meng and W. C. Oh, Kor. J. Mater. Res., 20(3), 117 (2010). https://doi.org/10.3740/MRSK.2010.20.3.117
  19. S. H. Song, O. S. Kwon, H. K. Jeong, and Y. G. Kang, Kor. J. Mater. Res., 20(2), 104 (2010). https://doi.org/10.3740/MRSK.2010.20.2.104
  20. J. W. Jin, Y. D. Park, D. G. Nam, S. B. Lee, S. L. Kim, N. H. Kang and M. K. Cho, Kor. J. Mater. Res., 19(6), 293 (2009). https://doi.org/10.3740/MRSK.2009.19.6.293
  21. Y. H. Jiang, Y. K. Park and O. Y. Lee, Kor. J. Mater. Res., 17(12), 634 (2007). https://doi.org/10.3740/MRSK.2007.17.12.634
  22. T. Tsumura, N. Kojitani, H. Toyoda and M. Inagaki, Appl. Surf. Sci., 15, 429 (2002).
  23. N. S. Roh, K. H. Kim, and D. C. Kim, Hwahak Konghak, 33, 282 (1995).
  24. S. H. Joo, S. J. Choi, I. Oh, J. Wak, Z. Liu, O. Terasaki, and R. Ryoo, Nature, 412, 169 (2001). https://doi.org/10.1038/35084046
  25. W. Lu and D. D. L. Chung, Carbon, 35, 427 (1997). https://doi.org/10.1016/S0008-6223(97)89614-5
  26. W. C. Oh, M. L. Chen, F. J. Zhang and H. T. Jang, J. Kor. Ceram. Soc., 45, 324 (2008). https://doi.org/10.4191/KCERS.2008.45.6.324
  27. S. H. Kim, Kor. J. Mater. Res., 16(1), 25 (2006). https://doi.org/10.3740/MRSK.2006.16.1.025
  28. W. C. Oh, A. R. Jung, and W. B. Ko, Mater. Sci. Eng. C, 29, 1338 (2009). https://doi.org/10.1016/j.msec.2008.10.034
  29. J. W. Kim, M. H. Sohn, D. S. Kim, S. M. Sohn, and Y. S. Kwon, J. Hazard. Mater., 85, 301 (2001). https://doi.org/10.1016/S0304-3894(01)00239-4
  30. S. C. Kim, I. K. Hong, and K. A. Park, J. Ind. Eng. Chem., 3, 218 (1997) .
  31. I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem., 98, 4133 (1994). https://doi.org/10.1021/j100066a037
  32. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  33. M. A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, and A. Linares-Solano, J. Phys. Chem. B, 106, 10930 (2002). https://doi.org/10.1021/jp014543m
  34. R. Devi and R.P. Dahiya, Water Air Soil Pollut., 174, 33 (2006). https://doi.org/10.1007/s11270-005-9022-9