DOI QR코드

DOI QR Code

Fabrication and Evaluation of Hydorgenation Propeties on Mg8Ti2-(10, 20 wt.%)Ni Composites

Mg8Ti2-(10, 20 wt.%)Ni 수소저장합금의 제조 및 수소화 특성 평가

  • Kim, Kyeong-Il (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University) ;
  • Hong, Tae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National University)
  • 김경일 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터)
  • Received : 2010.09.16
  • Accepted : 2010.10.07
  • Published : 2010.10.27

Abstract

The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.

Keywords

References

  1. F. A. Lewis and A. Alsdjem., Hydrogen Metal System I, p.37-54, SCITEC PUB, Zuerich (1996).
  2. R. Kirchheim, T. Mutschele, W. Kieninger, H. Gleiter, R. Birringer and T. D. Koble, Mater. Sci. Eng., 99, 457 (1988). https://doi.org/10.1016/0025-5416(88)90377-1
  3. A. K. Singh, A. K. Singh and O. N. Srivastava, J. Alloy. Comp., 227, 63 (1995). https://doi.org/10.1016/0925-8388(95)01625-2
  4. L. Zaluski, A. Zaluska and J. O. Ström-Olsen, J. Alloy. Comp., 253-254, 70 (1997). https://doi.org/10.1016/S0925-8388(96)02985-4
  5. C. Iwakura, S. Nohara, S. G. Zhang and H. Inoue, J. Alloy. Comp., 285, 246 (1999). https://doi.org/10.1016/S0925-8388(98)00966-9
  6. G. Alefeld, Hydrogen in Metals II, p.216, Springer-Verlag, NY (1978).
  7. W. B. Kim, D. J. Lee, J. S. Park, C. Y. Seo and J. C. Lee, Kor. J. Mater. Res., 15, 79(2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.2.079
  8. L. Schlapbach, Hydrogen in Intermetallic Compounds II, p.183, Springer, USA (1992).
  9. E. Zhou, C. Suryanarayana and F. H. (Sam) Froes, Mater. Lett., 23, 27 (1995). https://doi.org/10.1016/0167-577X(95)00009-7
  10. G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz, J. Alloy. Comp., 284, 312 (1999). https://doi.org/10.1016/S0925-8388(98)00924-4
  11. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey and H. K. Liu, J. Alloy. Comp., 422, 299 (2006). https://doi.org/10.1016/j.jallcom.2005.11.074
  12. M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutflesich and R. Bormann, Scripta Mater., 56, 841 (2007). https://doi.org/10.1016/j.scriptamat.2007.01.003
  13. T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, Binary Alloy Phase Diagrams, p.1528, ASM, USA (1986).
  14. T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, Binary Alloy Phase Diagrams, p.1555, ASM, USA (1986).
  15. V. N. Fadeev and V. A. Syasin, Inorg. Mater., 32, 1495 (1996).
  16. B. Bogdanovi c, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, B. Spliethoff and S. Wessel, J. Alloy. Comp., 282, 57(1999).
  17. D. J. Davidson, S. S. Sai Raman and O. N. Srivastava, J. Alloy. Comp., 282, 194 (1999).
  18. S. Orimo and H. Fujii, J. Alloy. Comp., 232, L16 (1996). https://doi.org/10.1016/0925-8388(95)02079-9
  19. L. M. Das, Int, J. Hydrogen Energ., 15, 425(1990). https://doi.org/10.1016/0360-3199(90)90200-I

Cited by

  1. Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles vol.55, pp.4, 2012, https://doi.org/10.1007/s11431-011-4706-4