DOI QR코드

DOI QR Code

Size Tunable Nano Patterns Using Nanosphere Lithography with Ashing and Annealing Effect

나노 구체 리소그라피법에 Ashing과 Annealing 효과를 적용하여 크기조절 가능한 나노패턴의 제조

  • Lee, Yu-Rim (Department of Advanced Materials Engineering, Graduate School of Kookmin University) ;
  • Alam, Mahbub (Department of Advanced Materials Engineering, Graduate School of Kookmin University) ;
  • Kim, Jin-Yeol (Department of Advanced Materials Engineering, Graduate School of Kookmin University) ;
  • Jung, Woo-Gwang (Department of Advanced Materials Engineering, Graduate School of Kookmin University) ;
  • Kim, Sung-Dai (Department of Quality Non-Destructive Testing, Seoul Sanggye Vocational School)
  • 이유림 (국민대학교 신소재공학과) ;
  • 마흐붑 알람 (국민대학교 신소재공학과) ;
  • 김진열 (국민대학교 신소재공학과) ;
  • 정우광 (국민대학교 신소재공학과) ;
  • 김승대 (서울시립상계직업전문학교 품질비파괴검사과)
  • Received : 2010.09.16
  • Accepted : 2010.10.11
  • Published : 2010.10.27

Abstract

This work presents a fabrication procedure to make large-area, size-tunable, periodically different shape metal arrays using nanosphere lithography (NSL) combined with ashing and annealing. A polystyrene (PS, 580 ${\mu}m$) monolayer, which was used as a mask, was obtained with a mixed solution of PS in methanol by multi-step spin coating. The mask morphology was changed by oxygen RIE (Reactive Ion Etching) ashing and temperature processing by microwave heating. The Au or Pt deposition resulted in size tunable nano patterns with different morphologies such as hole and dots. These processes allow outstanding control of the size and morphology of the particles. Various sizes of hole patterns were obtained by reducing the size of the PS sphere through the ashing process, and by increasing the size of the PS sphere through annealing treatment, which resulted in tcontrolling the size of the metallic nanoparticles from 30 nm to 230 nm.

Keywords

References

  1. U. C. Fischer and H. P. Zingsheim, J. Vac. Sci. Tech., 19, 881 (1981). https://doi.org/10.1116/1.571227
  2. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Tech., A 13, 3 (1995).
  3. M. Giersig and P. Mulvaney, J. Phys. Chem., 97, 6334 (1993). https://doi.org/10.1021/j100126a003
  4. M. Giersig and P. Mulvaney, Langmuir, 9, 3408 (1993). https://doi.org/10.1021/la00036a014
  5. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller and H. Weller, Adv. Mater., 12, 333 (2000). https://doi.org/10.1002/(SICI)1521-4095(200003)12:5<333::AID-ADMA333>3.0.CO;2-X
  6. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Tech., A 13, 1553 (1995). https://doi.org/10.1116/1.579726
  7. R. Micheletto, H. Fukuda and M. Ohtsu, Langmuir, 11, 3333 (1995). https://doi.org/10.1021/la00009a012
  8. F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg and P. Leiderer, Appl. Surf. Sci., 144-145, 461 (1999). https://doi.org/10.1016/S0169-4332(98)00840-X
  9. C. L. Cheung, R. J. Nikoli´c, C. E. Reinhardt and T. F. Wang, Nanotechnology, 17, 1339 (2006). https://doi.org/10.1088/0957-4484/17/5/028
  10. C. Haginoya, M. Ishibashi and K. Koike, Appl. Phys. Lett., 71, 2934 (1997). https://doi.org/10.1063/1.120220
  11. C. -M. Hsu, S. T. Connor, M. X. Tang and Y. Cui, Appl. Phys. Lett., 93, 133109 (2008). https://doi.org/10.1063/1.2988893
  12. A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone and F. Rossi, J. Phys. Appl. Phys., 40, 2341 (2007). https://doi.org/10.1088/0022-3727/40/8/S13
  13. A. Kosiorek, W. Kandulski, H. Glaczynska and M. Giersig, small, 1, 439 (2005). https://doi.org/10.1002/smll.200400099
  14. D. B. Lez, R. H. Lvarez and F. J. Las Nieves, J. Colloid. Interface Sci., 177, 372 (1996). https://doi.org/10.1006/jcis.1996.0046

Cited by

  1. Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography vol.23, pp.3, 2013, https://doi.org/10.3740/MRSK.2013.23.3.177