References
- Rubia K, Smith A. The neural correlates of cognitive time management: A review. Acta Neurobiol Exp (Wars). 2004;64(3):329-40.
- Coull JT, Nobre AC. Dissociating explicit timing from temporal expectation with fmri. Current Opinion in Neurobiology. 2008;18(2):137-44. https://doi.org/10.1016/j.conb.2008.07.011
- Bueti D, Walsh V, Frith C et al. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204-14. https://doi.org/10.1162/jocn.2008.20017
- Jantzen KJ, Oullier O, Marshall M et al. A parametric fmri investigation of context effects in sensorimotor timing and coordination. Neuropsychologia. 2007;45(4):673-84. https://doi.org/10.1016/j.neuropsychologia.2006.07.020
- Park JW, Kwon YH, Lee MY et al. Brain activation pattern according to exercise complexity: A functional mri study. NeuroRehabilitation. 2008;23(3):283-8.
- Dominey PF. A shared system for learning serial and temporal structure of sensori-motor sequences? Evidence from simulation and human experiments. Brain Res Cogn Brain Res. 1998;6(3):163-72. https://doi.org/10.1016/S0926-6410(97)00029-3
- Kwon YH, Jang SH, Kim CS. Changes of cortical activation pattern induced by motor learning with serial reaction time task. J Kor Soc Phys Ther. 2009;21(1):65-72. https://doi.org/10.1589/jpts.21.65
- Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measurs. Cogn Psychol. 1987;19:1-32. https://doi.org/10.1016/0010-0285(87)90002-8
- Park JW, Kim YH, Jang SH et al. Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation. 2010;26(2):95-103.
- Park JW, Jang SH. The difference of cortical activation pattern according to motor learning in dominant and non-dominant hand: An fmri case study. J Kor Soc Phys Ther. 2009;21(1):81-8.
- Yoo WK, You SH, Ko MH et al. High frequency rtms modulation of the sensorimotor networks: Behavioral changes and fmri correlates. Neuroimage. 2008;39(4):1886-95. https://doi.org/10.1016/j.neuroimage.2007.10.035
- Grafton ST, Hazeltine E, Ivry R. Functional mapping of sequence learning in normal humans. J Cognit Neurosci. 1995;7:497-510. https://doi.org/10.1162/jocn.1995.7.4.497
- Hazeltine E, Grafton ST, Ivry R. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A pet study. Brain. 1997;120(Pt 1):123-40.
- Toni I, Krams M, Turner R et al. The time course of changes during motor sequence learning: A whole-brain fmri study. Neuroimage. 1998;8(1):50-61. https://doi.org/10.1006/nimg.1998.0349
- Halsband U, Freund HJ. Premotor cortex and conditional motor learning in man. Brain. 1990;113(Pt 1):207-22. https://doi.org/10.1093/brain/113.1.207
- Petrides M. Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia. 1997;35(7):989-97. https://doi.org/10.1016/S0028-3932(97)00026-2
- Verstynen T, Diedrichsen J, Albert N et al. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol. 2005;93(3):1209-22. https://doi.org/10.1152/jn.00720.2004
- Seitz RJ, Hoflich P, Binkofski F et al. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol. 1998;55(8):1081-8. https://doi.org/10.1001/archneur.55.8.1081
- Rubia K, Overmeyer S, Taylor E et al. Prefrontal involvement in "Temporal bridging" And timing movement. Neuropsychologia. 1998;36(12):1283-93. https://doi.org/10.1016/S0028-3932(98)00038-4
- Harrington DL, Haaland KY. Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999;10(2):91-116. https://doi.org/10.1515/REVNEURO.1999.10.2.91
- Curtis CE. Prefrontal and parietal contributions to spatial working memory. Neuroscience. 2006;139(1):173-80. https://doi.org/10.1016/j.neuroscience.2005.04.070
- Ricciardi E, Bonino D, Gentili C et al. Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience. 2006;139(1):339-49. https://doi.org/10.1016/j.neuroscience.2005.08.045
- Rubia K, Overmeyer S, Taylor E et al. Functional frontalisation with age: Mapping neurodevelopmental trajectories with fmri. Neurosci Biobehav Rev. 2000;24(1):13-9. https://doi.org/10.1016/S0149-7634(99)00055-X
- Emond V, Joyal C, Poissant H. [structural and functional neuroanatomy of attention-deficit hyperactivity disorder (adhd)]. Encephale. 2009;35(2):107-14. https://doi.org/10.1016/j.encep.2008.01.005
- Schell GR, Strick PL. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci. 1984;4(2):539-60. https://doi.org/10.1523/JNEUROSCI.04-02-00539.1984
- Halsband U, Ito N, Tanji J et al. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain. 1993;116(Pt 1):243-66. https://doi.org/10.1093/brain/116.1.243
- Mostofsky SH, Powell SK, Simmonds DJ et al. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(Pt 9):2413-25. https://doi.org/10.1093/brain/awp088
- Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334-46. https://doi.org/10.1016/S0079-6123(08)60971-1
- Smith A, Taylor E, Lidzba K et al. A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage. 2003;20(1):344-50. https://doi.org/10.1016/S1053-8119(03)00337-9
- Pouthas V, George N, Poline JB et al. Neural network involved in time perception: An fmri study comparing long and short interval estimation. Hum Brain Mapp. 2005;25(4):433-41. https://doi.org/10.1002/hbm.20126
- Basso G, Nichelli P, Wharton CM et al. Distributed neural systems for temporal production: A functional mri study. Brain Res Bull. 2003;59(5):405-11. https://doi.org/10.1016/S0361-9230(02)00941-3
- Ortuno F, Ojeda N, Arbizu J et al. Sustained attention in a counting task: Normal performance and functional neuroanatomy. Neuroimage. 2002;17(1):411-20. https://doi.org/10.1006/nimg.2002.1168
- Eliassen JC, Souza T, Sanes JN. Experience-dependent activation patterns in human brain during visual-motor associative learning. J Neurosci. 2003;23(33):10540-7. https://doi.org/10.1523/JNEUROSCI.23-33-10540.2003
- Grafton ST, Hazeltine E, Ivry RB. Motor sequence learning with the nondominant left hand. A pet functional imaging study. Exp Brain Res. 2002;146(3):369-78. https://doi.org/10.1007/s00221-002-1181-y
- Nelson AJ, Staines WR, McIlroy WE. Tactile stimulus predictability modulates activity in a tactile-motor cortical network. Exp Brain Res. 2004;154(1):22-32. https://doi.org/10.1007/s00221-003-1627-x
- Burton H. Cerebral cortical regions devoted to the somatosensory system: Results from brain imaging studies in humans. In: Nelson RJ, eds, The somatosensory system: Deciphering the brain's own body image, Boca Raton, FL, CRC Press, 2002:27-72.
- Hansson T, Brismar T. Tactile stimulation of the hand causes bilateral cortical activation: A functional magnetic resonance study in humans. Neurosci Lett. 1999;271(1):29-32. https://doi.org/10.1016/S0304-3940(99)00508-X
- Iwamura Y. Bilateral receptive field neurons and callosal connections in the somatosensory cortex. Philos Trans R Soc Lond B Biol Sci. 2000;355(1394):267-73. https://doi.org/10.1098/rstb.2000.0563
- Schnitzler A, Salmelin R, Salenius S et al. Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett. 1995;200(1):25-8. https://doi.org/10.1016/0304-3940(95)12065-C
- Cavada C, Goldman-Rakic PS. Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience. 1991;42(3):683-96. https://doi.org/10.1016/0306-4522(91)90037-O