Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock

열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법

  • 박민영 (서울산업대학교 산업대학원 기계설계학과) ;
  • 박영일 (서울산업대학교 기계설계자동화공학부) ;
  • 구정서 (서울산업대학교 철도전문대학원 철도차량시스템공학과)
  • Received : 2010.01.27
  • Accepted : 2010.02.23
  • Published : 2010.04.26

Abstract

In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

본 연구에서는 복잡한 3차원 유한요소모델 충돌거동과 등가인 1차원 동역학 모델링 방법을 개발하기 위하여 새로운 1-D 모델링 방법을 제안하였다. 충돌 거동을 잘 일치시키기 위해서는 충돌 시너지를 주로 흡수하는 압괴 구간의 특성을 정확하게 모델링하는 것이 중요하다. KHST 편성차량을 대상으로 3차원 유한요소 모델의 차체단면에 설정한 단면 옵션으로 충돌해석 시 차체 단면에 작용하는 충격하중과 변형을 추출하여 새로운 1차원 충돌동역학 모델의 스프링요소 특성으로 모델링하고, 국내철도차량 안전기준의 열차 대 열차 충돌사고 각본으로 수치해석을 수행하였다. 두 모델의 에너지 흡수량, 충돌 가속도, 충격하중-변형 등을 비교한 결과가 잘 일치하였다.

Keywords

References

  1. A. Marissal, B. Marguet, P. Drazetic, and Y. Ravalrd (1992) Comportement au Choc de Vehicles Guides, Revue Technique Gec Alsthom, No. 9, pp. 55-62.
  2. 건설교통부 (2005) 철도차량 안전기준에 관한 규칙, 건설 교통부령 제455호.
  3. 건설교통부 (2005) 철도차량 안전기준에 관한 지침, 건설 교통부고시 제2005-438호.
  4. 건설교통부 (2007), 철도차량 안전기준에 관한 지침, 건설 교통부고시 제2007-278호.
  5. J. S. Koo, H. J. Cho, D. S. Kim, and Y. H. Youn (2001) An evaluation of crashworthiness for the full rake, Korean Society for Railway, 4(3), pp. 94-101.
  6. G. Y. Kim, H. J. Cho, J. S. Koo, and T. S. Kwon (2008) A derivation of the standard design guideline for crashworthiness of high speed train with power cars, Transactions of KSAE, 16(6), pp. 157-167.
  7. J. S. Koo and D. H. Song (1998) Collision analysis of the full rake TGV-K on crashworthiness, Korean Society for Railway, 1(1), pp. 1-9.
  8. G. Y. Kim and J. S. Koo (2009) A study on overriding analysis using 2D dynamic model of railway vehicle, Transactions of KSAE, 9, pp. 276-279.
  9. Y. Ujita, K. Funatsu, and Y. Suzudi (2003) Crashworthiness investigation of railway carriages, Q.R. OF RTRI, 44(1), pp. 28-33. https://doi.org/10.2219/rtriqr.44.28
  10. M. Wilson and B. Ricketts (2002) Validation simulation of new railway rolling stock using the finite element method, 4th European LS-DYNA Users Conference, Crash/automotive applications(B), Session II, pp. 1-14.
  11. D. Tyrell and E. Martinez (2006) A Train-to-Train Impact Test of Crash Energy Management Passenger Rail Equipment, Volpe Report.
  12. R. Stringfellow and P. Llana (2007) Detailed Modeling of the Train-to-Train Impact Test, Federal Railroad Administration Final Report.
  13. J. S. Koo, H. J. Cho, and K. S. Rho (2003) A study on crashworthiness of Korean High Speed Train, CAE Application Conference, Crash/Impact-9, pp. 1-10.
  14. K. J. Severson, D. Tyrell, and A. B. Perlman (2000) Rail Passenger Equipment Collision Tests : Analysis of Structural Measurements, U.S. Department of Transportation, November 6, ASME RTD Vol. 19.
  15. K. Jacobsen and D. Tyrell (2003) Rail Car Impact Test with Steel Coil: Collision Dynamics, ASME RTD 2003-1655, pp. 73-82
  16. ADT/SOR (2006) Train Crashworthiness for Europe, SAFETRAIN/ final Report, 2006 Dublin Conference.
  17. W. G. Kim and J. S. Koo (2009) A study on data filtering techniques to evaluate collision accelerations of rolling stock, Korea Society for Noise and Vibration Engineering, pp. 3130- 3133.