Study on Buckling Instability of Expansion Tube using Finite Element Method

유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구

  • 최원목 (과학기술연합대학원대학교 가상공학과) ;
  • 권태수 (한국철도기술연구원 정책전략연구실) ;
  • 정현승 (한국철도기술연구원 철도구조연구실)
  • Received : 2010.01.26
  • Accepted : 2010.04.19
  • Published : 2010.04.26

Abstract

Since the kinetic energy is dissipated through plastic deformation energy generated in expanding process of the tube by a die. In order to successfully absorb the kinetic energy there should be no buckling in the expansion tube during expanding process. The buckling instability of the expansion tubes is affected by the initial boundary conditions, tube thickness and length. In this study, the effects of the tube thickness except length and initial boundary condition on the buckling instability are studied using a finite element method. In addition, Analysis procedure for nonlinear post-buckling analysis of expansion tube is established. There are three kinds of finite element analysis procedures for buckling analysis of expansion tube, quasi-static analysis, linear buckling analysis and nonlinear post-buckling analysis. The effect of the geometry imperfections defined as linear superimposition of buckling modes is considered in the nonlinear post-buckling analysis. The results of finite element analysis indicate that the buckling load increase with increase of thickness of tube and geometry imperfection. Finial buckling shapes are changed with respect to the geometry imperfection.

충돌에너지는 다이에 의해 확관되는 팽창튜브의 소성변형에너지로 흡수된다. 충돌에너지를 성공적으로 흡수하기 위하여 튜브가 팽창되는 동안 좌굴이 발생해서는 안 된다. 팽창튜브의 좌굴불안전성은 초기경계조건과 튜브 두께 그리고 길이에 영향을 받는다. 본 연구는 동적 축 하중을 받는 팽창튜브의 좌굴을 예측하기 위한 경계조건의 결정, 기하학적 결함의 적용 그리고 재료의 비선형성과 동적효과를 적용하는 일련의 해석방법 및 절차를 제안하였다. 또한, 기하학적 결함의 적용이 튜브의 좌굴하중과 좌굴형상에 미치는 영향을 유한요소해석 결과를 통하여 분석하였고 튜브두께와 기하학적 결함의 상관관계를 연구하였다. 해석결과 기하학적 결함과 튜브의 좌굴형상은 밀접한 관계가 있었고 튜브의 두께가 작으면 기하학적 결함에 상관없이 좌굴하중은 변하지 않았다. 하지만, 두께가 증가할 경우 결함율이 증가하면 좌굴하중이 감소하는 경향을 보였다.

Keywords

References

  1. 구정서, 송달호 (1998) TGV-K 전체 차량의 충돌안전도 해석 연구, 한국철도학회논문집, 1(1), pp. 1-9.
  2. ERRI, SNCF, DB and PKP (2001) Train Crashworthiness for Europe, Safetrain Final Report.
  3. P. A. R. Rosa, J. M. C. Rodrigues, and P. A. F. Martins (2003) External inversion of thin-walled tubes using a die: Experimental and theoretical investigation, International Journal of Machine Tools & Manufacture, 43, pp. 787-796. https://doi.org/10.1016/S0890-6955(03)00062-2
  4. Se-Hee Oh, Kwang-Soo Kim, and Chun-Gon Kim (2006) An efficient postbuckling analysis technique for composite stiffened curved panels, Composite Structures, 74, pp. 361-369. https://doi.org/10.1016/j.compstruct.2005.04.016
  5. Kwanghyun Ahn, Jin Sung Kim, and Hoon Huh (2008), The effect of local buckling on the crash energy absorption of thinwalled expansion tubes, Numisheet 2008, pp. 799-804.
  6. Alfred B. Dorey, David W. Murray, and J. J. Roger Cheng (2006) Initial imperfection models for segments of line pipe, Transectins of the ASME, 128, pp. 322-329.
  7. F. R. Shanley (1947) Inelastic column theory, J. Aerosol Sci, 14, pp. 261.
  8. ABAQUS/Explicit Theoretical Manual.
  9. Silvestre. N and Camotim. D (2004) Local-plate and distortional post-buckling behavior of cold-formed steel lipped channel columns with intermediate stiffeners, Proceedings of Seventeen International Speciality Conference on Cold- Formed Steel Structures, pp. 1-18.
  10. Derrick. C. Y. Yap, and Cregory. J. Hancock (2006) Interaction buckling and postbuckling in the distortional mode of thinwalled sections, Research Report, No. R870.