A Single-Phase Hybrid Active Filter for AC Electrified Railway Systems

교류전기철도 급전시스템의 전기품질 향상을 위한 단상 하이브리드 능동필터

  • 박한얼 (서울산업대학교 철도전문대학원) ;
  • 송중호 (서울산업대학교 전기공학과)
  • Received : 2009.10.29
  • Accepted : 2010.03.25
  • Published : 2010.04.26

Abstract

Generally, the AC electrified railway systems have the power quality problems that are induced from the harmonic currents and the reactive power. This paper presents a single-phase hybrid active filter adopting a SRF(synchronous-reference-frame) control for improving power quality in the AC electrified railway systems. The single-phase hybrid active filter can compensate the harmonic currents and the reactive power through the proposed SRF control algorithm. The proposed control algorithm can extract the third and fifth harmonics through the MSRF(multiple-synchronous-reference-frames) which is used to apply the three-phase systems. Therefore, the hybrid active filter can compensates only the high-frequency harmonic currents whereas the passive filter compensates the low-frequency harmonic currents. Also, the proposed SRF control algorithm can compensate the reactive power by the closed-loop control. The Validity and the effectiveness of the proposed SRF control method for the hybrid active filter are illustrated through the simulation results.

교류 전기철도 급전시스템은 고조파 왜곡 및 무효전력으로 인한 역률저하 등의 전기품질 문제를 동반한다. 교류 전기철도 급전시스템의 고조파 전류 및 무효전력을 보상하기 위해 SRF(synchronous-reference-frame) 제어를 이용한 하이브리드 능동필터를 제안한다. 제안하는 하이브리드 능동필터 제어 알고리즘은 3상에서만 응용되었던 MSRF(multiple-synchronous-reference-frames)를 통해 저차 고조파를 추출하여 상대적으로 크기가 작은 고차 고조파를 능동필터에서 보상하고 크기가 큰 저차 고조파를 수동필터에서 보상하며, 능동필터 또는 수동필터만을 사용했을 때 생길 수 있는 문제점들 보완한다. 또한, 폐루프 무효전력 보상알고리즘을 통해 무효전력을 보상한다. 시뮬레이션을 통해 제안하는 하이브리드 능동필터의 SRF 제어 방법의 제어 성능과 타당성을 확인한다.

Keywords

References

  1. A. Boora, F. Zare, A. Ghosh, G. Ledwich (2007) "Application of power electronics in railway systems, IEEE UPEC proceedings, pp. 1-9.
  2. J. Das (2004) Passive filter-potentialities and limitations, IEEE Trans. on Industry Applications, 40(1), PP. 232-241. https://doi.org/10.1109/TIA.2003.821666
  3. P. Tan, P. Loh, D. Holmes (2004) A robust multilevel hybrid compensation system for 25-kV electrified railway applications", IEEE Trans. on Power Electronics, 19(4) pp. 1043-1052 . https://doi.org/10.1109/TPEL.2004.830038
  4. N. He, D. Xu, L. Huang (2009) The application of particle swarm optimization to passive and hybrid active power filter design, IEEE Trans. on Industrial Electronics, 56(8) pp. 2841- 2851. https://doi.org/10.1109/TIE.2009.2020739
  5. V. Corasaniti, M. Barbieri, P. Arnera, M. Valla (2009) Hybrid active filter for reactive and harmonics compensation in a distribution network, IEEE Trans. on Industrial Electronics, 56 (3), pp. 670-677. https://doi.org/10.1109/TIE.2008.2007997
  6. W. Guo, T. Mingxing, R. Enen (2008) Identification of hybrid active compensation topology for electrified railway load, IEEE ICEMS Proceedings, pp. 2092-2095.
  7. 김형준 (2005) 전철 적용을 위한 능동필터, 서울산업대학교 철도전문대학원 석사학위논문, pp. 18-19.
  8. F. Peng, D. Adams (1999) Harmonic sources and filtering approaches, IEEE IAC Proceedings, pp. 448-455.
  9. F. Blaabjerg, R. Teodorescu, M. Lieserre, A. Timbus (2006) Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. on Industrial Electronics, 53(5), pp. 1398-1409.
  10. S. Bhattacharya, P. Cheng, D. M. Divan (1997) Hybrid solutions for improving passive filter performance in high power applications, IEEE Trans. on Industry Applications, 33(3), pp. 732-747. https://doi.org/10.1109/28.585864
  11. 박한얼, 강옥구, 장우진, 송화창, 송중호 (2009) 동기좌표계를 이용한 교류 전기철도용 단상 UPQC, 한국철도학회 논문집, 12(5).
  12. 오광해, 이한민 (2004) 전기철도에서의 고조파 발생과 계통응답특성(II), 한국철도학회논문집, 7(1), pp. 65-69.