A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2

열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2

  • 이중호 (인천광역시청, 서울산업대학교 철도전문대학원 철도전기신호공학과) ;
  • 김민석 (서울산업대학교 철도전문대학원 철도전기신호공학과) ;
  • 이종우 (서울산업대학교 철도전문대학원 철도전기신호공학과)
  • Received : 2010.03.30
  • Accepted : 2010.04.15
  • Published : 2010.04.26

Abstract

Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

현재 전기철도에서는 고성능 유도전동기를 사용하고 있어서 열차속도제어를 위해 벡터제어를 이용하고 있다. 또한 최근에 인버터와 제어이론의 개발로 인해 다양한 방법으로 유도전동기 제어가 가능하다. 현재 유도 전동기를 사용하는 철도차량은 교류전동기를 이용한 역행, 역상제동 및 회생제동 등이 가능하다. 따라서 다양한 방법을 적용하기 위해서는 모터블록과 유도전동기의 모델이 필요하다. 유도전동기의 제어 방법으로는 가변 전압운전, 가변주파수 운전을 통하여 유도전동기의 토크와 회전수를 제어한다. 철도차량 추진시스템은 많은 서브시스템을 가지고 있어 속도제어 성능을 해석하기가 매우 복잡하다. 본 논문에서는 유도전동기를 사용하는 철도차량 추진시스템을 대상으로 Matlab/Simulink를 이용한 속도제어 특성을 분석하였고, 일정시간에 부하에 대한 외란입력응답 특성을 해석하였다. 또한 철도차량 추진시스템의 속도제어 특성을 해석하기 위해 전류, 속도, 자속추정기 및 유도전동기 모델을 제시하였다.

Keywords

References

  1. Sanghoon Kim (2001) Development of driving system for railway vehicle using vector control, Journal of The Korean Institute of Power Electronics, 6(2), pp. 125-131.
  2. G. R. Slemon (1989) Modeling induction machines for electric drives, IEEE Trans. on Industry Applications, 25(6), pp. 1126-1131. https://doi.org/10.1109/28.44251
  3. F. Blashke (1972) The principle of field orientation as applied to the new transvector closed-loop control system for rotationfield machines, Siemens Review, 34, pp. 217-220.
  4. Chanbae Park (2009) Dynamic characteristics analysis considering the effect of the vortexes of flux in a LIM for railway propulsion system, Journal of The Korean Society for Railway, 12(3), pp. 437-442.
  5. Hideki Hashimoto and Yuko Ohno (1989) Torque control of induction motor using predictive observer, IEEE, pp. 271-278.
  6. Ion Boldea and S. A. Nasar (1999) Electric drives, CRC Press, pp. 154-159.
  7. H. S. Yoo and I. J Ha (1996) A polar coordinate-oriented method of identifying rotor flux and speed of induction motors without rotational transducers, IEEE Trans. on Control System Technology, 4(3), pp. 230-243. https://doi.org/10.1109/87.491197
  8. Marko Hinkkanen (2002) Analysis and design of full-order flux observer for sensorless induction motors, IEEE, pp. 77-82.
  9. H.-T. Lee, L.-C. Fu, and S.-H. Hsu (2002) Adaptive speed/position control of induction motor with unknown load torque, Proceedings of American Control Conference Anchorage, pp. 4583-4588, 2002.
  10. Stephan Kuhne and Ulrich Riefenstahl (1999) A new torque calculation motor drives that improves accuracy and dynamic behaviour, ISIE'99-Bled Solvenia, pp. 498-503.
  11. Sanghoon Kim (2007) DC & AC Motor Control, Bogdoo publisher, pp. 230-232.
  12. Sanghoon Kim (2007) DC & AC Motor Control, Bogdoo publisher, pp. 187-189.
  13. Chun-Chieh Wang and Chih-Hsing Fang (2003) Sensorless scalar- controlled induction motor drives with modified flux observer, IEEE Transaction on Energy Conversion, 18(2), pp. 181-186. https://doi.org/10.1109/TEC.2002.805181
  14. Jaesung Yu (2006) "Sensorless vector control of spindle induction motors using rotor flux observer with a variable bandwidth, Journal of the Korean Institute of Power Electronics, 11(5), pp. 417-425.
  15. Naesu Cho (2002) The design of current and speed controller for vector control of induction motor, Proceeding of the Korean Institute of Power Electronics, pp. 196-199.
  16. Texas Instruments (1988) Third-generation TMS320 user's guide, Texas Instruments, pp. 55-65.
  17. Sanghoon Kim (2007) DC & AC Motor Control, Bogdoo publisher, pp. 193-195.
  18. Yen-Shin Lai (2003) Machine modeling and universal controller for vector-controlled induction motor drives, IEEE Trans., 18(1), 23-32.