A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1

열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1

  • 이중호 (인천광역시청, 서울산업대학교 철도전문대학원 철도전기신호공학과) ;
  • 김민석 (서울산업대학교 철도전문대학원 철도전기신호공학과) ;
  • 이종우 (서울산업대학교 철도전문대학원 철도전기신호공학과)
  • Received : 2010.03.30
  • Accepted : 2010.04.15
  • Published : 2010.04.26

Abstract

Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

전기철도는 전력공급시스템과 전기차로 구성되어 있다. 전기철도의 전기차는 대규모의 견인력을 얻을 수 있어 대량수송과 고속운전에 적합하다. 전기차는 모터블록과 견인전동기에 의해서 구동되며, 지령속도에 따라 모터블록에서 견인전동기에 전력을 공급하여 속도가 제어된다. 전기차의 속도제어는 모터블록과 견인전동기의 최소 에너지로 속도를 제어하는 것이 목표이다. 최근의 견인전동기는 직류 및 동기전동기에서 유도전동기를 사용하고 있다. 대부분의 유도전동기는 벡터제어기법을 사용하여 유도전동기의 속도를 제어한다. 본 논문에서는 유도전동기의 벡터제어기법을 이용하여 유도전동기의 속도를 제어하였다. Simulink를 이용하여 제어시스템을 모델링하고, PI 제어기와 Hysteresis 제어기를 이용하여 펄스를 제어하여 전동기의 속도를 제어하였다. 실시간 제어를 위해 IGBT 인버터를 사용하였고, 유도전동기 구동실험에 의해 시스템 성능을 입증하였다.

Keywords

References

  1. Yen-Shin Lai (2003) Machine modeling and universal controller for vector-controlled induction motor drives, IEEE Trans., 18(1), pp.23-32, 2003.
  2. Chanbae Park (2009) Dynamic characteristics analysis considering the effect of the vortexes of flux in a LIM for railway propulsion system, Journal of The Korean Society for Railway, 12(3), pp. 437-442.
  3. S. Bhattacharya (1996) Parallel active filter system implementation and design issues for utility interface of adjustable speed drive systems, IEEE-IAS, pp.1032-1039.
  4. H. S. Yoo and I. J Ha (1996) A polar coordinate-oriented method of identifying rotor flux and speed of induction motors without rotational transducers, IEEE Trans. on Control System Technology, 4(3), pp. 230-243. https://doi.org/10.1109/87.491197
  5. G. R. Slemon (1989) Modeling induction machines for electric drives, IEEE Trans. on Industry Applications, 25(6), pp. 1126-1131. https://doi.org/10.1109/28.44251
  6. Jongwoo Choi (1996) Fast current controller in 3-phase AC/ DC boost converter using D-Q axis cross-coupling, Proceeding of PESC, pp. 177-182.
  7. F. Blashke (1972) The principle of field orientation as applied to the new transvector closed-loop control system for rotationfield machines, Siemens Review, 34, pp. 217-220.
  8. J. Holz (1994) Pulse width modulation for electronic power conversion, Proceeding of IEEE, 82(8), pp. 1194-1214. https://doi.org/10.1109/5.301684
  9. R. Dedonker (1994) The universal field oriented controller, Trans. on Industry Applications, 30(1), pp. 92-100. https://doi.org/10.1109/28.273626
  10. Thierry Thomas (1998) Desing and performance of active power filters, IEEE Trans. on Industry Applications Magazine, pp. 38-46.
  11. F. Z. Peng (1998) Hamonic and reactive power compensation based on generalized instantaneous reactive power theory for three-phase four-wire systems, IEEE Trans on Power Electronics, 13(6), pp. 1174-1181. https://doi.org/10.1109/63.728344
  12. Hyunsik Choi (2003) A study and analysis of control method for parallel active power filter, Journal of the Institute of Electronics Engineering of Korea, 40(1), pp. 73-78.
  13. P. F. Wojciak (1996) The design and implementation of active filter systems using variable structure system concepts, Proceeding of IEEE-IAS Annual Meeting, pp. 850-857.
  14. P. L. Jansen (1992) A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives, Proceeding of IEEE-IAS Annual Meeting, pp. 570-577.
  15. Kouji Yasuda (1995) PWM control method of a high frequency two-level inverter for Trains, Proceeding of IPECYokohama, pp. 1066-1070.