A Study on Image Noise Reduction Technique for Low Light Level Environment

저조도 환경의 영상 잡음제거 기술에 관한 연구

  • 이호철 (광운대학교 전자정보공과대학 컴퓨터공학과) ;
  • 남궁재찬 (광운대학교 전자정보공과대학 컴퓨터공학과) ;
  • 이성원 (광운대학교 전자정보공과대학 컴퓨터공학과)
  • Received : 2010.04.15
  • Accepted : 2010.05.03
  • Published : 2010.06.26

Abstract

Recent advance of digital camera results in that image signal processing techniques are widely adopted to railroad security management. However, due to the nature of railroad management many images are acquired in low light level environment such as night scenes. The lack of light causes lots of noise in the image, which degrades image quality and causes errors in the next processes. 3D noise reducing techniques produce better results by using consecutive sequence of images. On the other hand, they cause degradation such as motion blur if there are motions in the sequence. In this paper, we use an adaptive weight filter to estimate more accurate motions and use the result of the adaptive filter to 3D result to improve objective and subjective mage quality.

디지털 카메라의 발전으로 인해 점차 영상을 사용한 철도의 안전관리기법이 그 사용범위를 넓히고 있다. 그러나 선로의 특성상 많은 저조도 환경에서의 영상 취득 과정에서는 심한 잡음이 영상의 화질을 떨어뜨릴 뿐만 아니라 추가적인 영상처리의 오류를 발생시킨다. 최근의 3D 잡음제거 방식은 시간적으로 연속된 영상간의 픽셀을 참조함으로 2D 잡음제거보다 더 나은 잡음 제거 결과를 얻을 수 있으나 움직임 부분에서는 오히려 모션 블러와 같은 열화가 나타나게 된다. 본 논문에서는 저조도 영상에서 적응적 가중평균필터를 이용하여 보다 정확한 움직임 검출을 구현하며, 3D 잡음제거 방식에 2D잡음 제거 방식의 결과를 적응적으로 사용하여 객관적 화질과 주관적 화질을 개선하였다.

Keywords

References

  1. E. Dubois and S. Sabri (1984) Noise reduction in image sequences using motion-compensated temporal filtering, IEEE trans. on Comm, 32, pp. 826-831. https://doi.org/10.1109/TCOM.1984.1096143
  2. M.K. Ozkan, M. Ibrahim Sezan, and A. Murat tekalp (1984) Nonlinear edge-preserving filter, IEEE trans acoustics, speech, and signal processing, ASSP-32(3).
  3. D.T. Kuan, A.A. Sawchuk, T.C. Strand, P. Chavel (1985) An adaptive noise smoothing filter for images with signal-dependent noise, IEEE trans. Patt. Anal. Mach. Intel, 7(2), pp. 165- 177.
  4. J. Ming (2004) An adaptive bilateral filtering method for image processing, Opto-Electronic Engineering, 31, pp. 65-69.
  5. G. Woods (2002) Digital Image Processing, Prentice Hall.
  6. Soren Hein (1995) Method and apparatus for adaptively producing noise-reduced digital image sequences. U.S patent, 444,422.
  7. V. Zlokolica (2004) Recursive Temporal Denoising and Motion Estimation of Video, ICIP, pp. 1465-1468.
  8. Siemens (1999) SDA 9400 SCARABAEUS Plus Scan Rate Converter Using Embedded Dram Technoology Units Manual, pp. 23-29.
  9. J.C. Brailean, A.K. Katsaggelos (1995) Simultaneous displacement estimation and restoration of noisy-burrered image sequences, IEEE Trans. on Image Processing, 4, pp. 1236-1251. https://doi.org/10.1109/83.413168
  10. C.A. Pomalaza-Raez, C.D. McGillem (1984) An adaptive, nonlinear edge-preserving filter, IEEE Trans. on Acoustics and Signal Processing, 32(3), pp. 571-576. https://doi.org/10.1109/TASSP.1984.1164361
  11. S.G. Lee, D.W. Lee, G.D. Kim (2009) A Study on the elimination method of noise image caused by rainfall using machine vision, Journal of the Korean Society for Railway, 12(3), pp. 364-369.