# 알콕시 곁사슬기가 비페닐렌구조를 갖는 전방향족 액정폴리에스터의 물성에 미치는 영향

이응재<sup>1</sup>, 방문수<sup>2\*</sup> <sup>1</sup>조선이공대학 생명환경화공과, <sup>2</sup>공주대학교 신소재공학부

# Effects of Alkoxy Side Chain on the Properties of Wholly Aromatic Liquid Crystalline Polyesters with Biphenylene Units

Eung-Jae Lee<sup>1</sup> and Moon-Soo Bang<sup>2\*</sup>

<sup>1</sup>Dept. of Bioenvironmental & Chemical Engineering, Chosun College University of Science & Technology

<sup>2</sup>Division of Advanced Materials Science and Engineering, Kongju National University

**요 약** 유연한 알콕시 곁사슬을 갖는 전방향족 폴리에스터가 direct polycondensation에 의하여 합성되었으며, 합성된 중합체들은 <sup>1</sup>H-NMR, FT-IR, DSC, TGA, 편광현미경 및 X-ray 분석기에 의하여 조사되었다. 1,1,2,2-테트라클로로에탄 (TCE)을 용매로 사용하여 측정된 중합체의 고유점성도(η imb)는 0.46~2.41 dL/g의 값을 나타내었다. 곁사슬을 갖는 중 합체들은 두 개의 용융전이 즉, 고체상-sanidic 액정상으로의 전이 (Tml)와 sanidic 액정상-nematic 액정상으로의 전이 (Tm2)를 나타내었으며, 알콕시 곁사슬의 길이가 증가함에 따라 상전이온도들은 감소하고, 유기용매에 의한 용해도는 증가하는 경향을 나타내었다. X-ray 분석에서, 2*θ* ≃5와 2*θ* ≃20 피이크는 각각 중합체 주사슬과 긴 곁사슬의 결정화 에 의한 것으로 나타났다.

Abstract Wholly aromatic polyesters having flexible alkoxy side chain were synthesized by direct polycondensation. The synthetic polymers have been characterized by <sup>1</sup>H-NMR, FT-IR. DSC, TGA, optical polarizing microscope and X-ray diffractometer. The inherent viscosities ( $\eta_{inh}$ ) measured in 1,1,2,2-tetrachloroethane (TCE) were 0.46~2.41 dL/g. The polymers having side chain showed double melting transition, ie, solid-sanidic liquid crystalline (LC) phase transition (T<sub>m1</sub>) and sanidic LC phase-nematic LC phase transition (T<sub>m2</sub>). As increasing length of alkoxy side chain, phase transition temperatures decreased and solubilities in organic solvents increased. The peaks of  $2\theta \approx 5$  and  $2\theta \approx 20$  in X-ray diffractograms are due to crystallization of polymer main chain and of long side chain, respectively.

Key Words : Liquid crystal, Polyester, Wholly aromatic, Side chain, Biphenylene

# 1. 서론

주사슬 열방성 액정중합체는 액정상태에서의 가공에 의하여 고성능을 갖는 섬유나 플라스틱을 만들 수 있어 이 들에 대한 연구가 지난 20여년 동안 활발히 진행되어 왔 다.[1,2] 특히 이들 중 전방향족 구조를 갖는 액정폴리에스 터는 간단한 구조를 가지면서 우수한 기계적물성을 기대 할 수 있으나, 이들의 열전이온도가 너무 높아 용융되기 전에 분해가 일어나 가열에 의한 일반적인 용융가공이 불 가능하기 때문에 고온 압축법이나 소결법과 같은 특수한 가공기술을 이용하여야 한다. 이 때문에 열방성액정중합 체에 대한 지금까지의 연구들 중 많은 수의 연구가 중합체 의 구조를 새롭게 설계하여 용융전이온도를 낮추거나 용 해도를 증가하도록 하여 가공성을 개선하고자 하였 다.[3,4] 액정중합체의 가공성을 개선하는 방법으로 중합 체 사슬에 유연격자를 삽입[5,6]하거나, 벌키하거나 비대

\*교신저자 : 방문수 (msbang@kongju.ac.kr) 접수일 10년 08월 05일 수정일 10년 10월 11일

게재확정일 10년 10월 15일

칭 치환기들을 갖도록 하거나[7,8], resorcinol, isophthalic acid, *m*-hydroxybenzoic acid와 같은 굽은 구조의 단위체 를 사용하여 중합체사슬이 비선형구조를 갖도록 하거나 [9,10], 중합체 반복단위들의 규칙성을 낮추는 공중합방 법[11] 등이 많이 연구되어 왔다.

이들 중 가장 많이 연구되어 온 방법으로 고분자 사슬 에 메틸렌기와 같은 유연격자를 도입하는 방법은 고분자 사슬의 강직성을 감소시킴으로서 용융온도를 낮추거나 용해성은 향상시킬 수 있으나 동시에 열안정성이나 기계 적성질은 저하된다. 따라서 주사슬의 방향족구조는 그대 로 유지하면서 극성 또는 비극성의 벌키한 치환기를 도 입하거나, 사슬의 직선성을 낮추어 용융 또는 용해가 용 이하도록 하여 가공특성을 개선하고자 하는 연구들이 보 고되고 있다.[12~15]

Lee 등[16]은 주사슬 전방향족 폴리에스터의 양 측면 에 유연한 지방족사슬이 도입된 중합체를 합성하여 이들 의 물성을 조사한 결과 용융전이온도가 낮아지고 용해도 가 증가되었음을 보고하였다. 이는 전방향족 폴리에스터 주사슬에 도입된 벌키한 치환기가 고분자사슬의 세그멘 트의 운동과 사슬간 패킹을 어렵게 하여, 분자간 또는 분 자내 인력이 감소하게 되고, 결과적으로 낮은 결정화도에 이르게 되어 고분자재료 전체의 용해 또는 용융특성을 개선할 수 있다.

따라서 본 연구에서는 전방향족 고분자가 갖는 특성의 감소를 최소한으로 하면서 가공성을 개선하기 위한 방법 의 일환으로, 주 사슬에 비페닐렌 구조를, 곁사슬로는 지 방족 알콕시기를 갖는 열방성 액정고분자를 설계·합성 하여 알콕시기의 길이에 따른 열적성질, 용해성, 액정성 등을 조사하였다.

# 2. 실험

#### 2.1 시약 및 기기

본 연구에서 사용된 시약인 4,4-biphenol, diethyl-2,5dihydroxyterephthalate, 1-bromoalkane, 1,1,2,2-tetrachloroethane (TCE), pyridine은 Aldrich사 제품을 그대로 사용하였으 며, thionyl chloride는 triphenylphosphite로 정제하여 사용 하였다.

합성된 화합물과 중합체의 구조분석, 열분석 및 액정 성을 조사하기 위하여 IR spectrometer (Perkin Elmer Spectrum 1000), <sup>1</sup>H-NMR spectrometer (JEOL JNM-AL 300), DSC (TA DSC Q20), TGA (PL STA 625), mp 측정 기(Fisher Scientific Co.), optical polarizing microscope (Leitz ortholux), hot stage (Linkam TP 92), XRD (Rigaku AX2500)를 이용하였다.

#### 2.2 중합체의 합성

알콕시 곁사슬을 갖는 단량체인 2,5-alkoxy terephthalic acid의 합성은 Ballauff의 방법[7]에 따라 합성하였고, 중 합체의 합성은 그림 1의 중합반응식과 같이 direct polycondensation에 의한 용액중합법[17]에 의하였으며, 피리딘과 SOCl<sub>2</sub>를 촉매로 사용하였다.



중합체들의 표기는, 알콕시 곁사슬이 없는 중합체를 P-0, 곁사슬이 있는 중합체들은 곁사슬의 탄소수를 n으로 하여 P-n과 같이 하였다. 중합체들 중 P-6인 경우를 예를 들어 정리하면 다음과 같다. 100 ml 플라스크에 SOCl2 1.95 g (1.6x10<sup>-2</sup> mole)을 넣고 0 ℃ 얼음중탕을 이용하여 반응물을 5 ℃ 이하로 유지하며 피리딘 13.2 ml (1.6x10<sup>-2</sup> mole)를 천천히 가하고 20분간 반응시킨다. 단위체인 2,5-hexoxyterephthalic acid 5.00 g  $(1.36 \times 10^{-2} \text{ mole}) \stackrel{\circ}{=}$ TCE/피리딘 (= 20 ml / 5 ml)에 용해한 후 플라스크에 천 천히 떨어뜨리고 30분동안 반응시켰다. 얼음중탕을 제거 하고, 실온에서 반응물을 강하게 교반시키며 TCE/피리딘 (= 20 ml / 5 ml)에 용해된 4,4'-biphenol 2.54 g (1.6x10<sup>-2</sup> mole)을 적하하고, 이 반응물을 80 ℃의 기름중탕으로 옮 겨 5시간동안 반응 시킨 후 메탄올에 떨어뜨려 침전을 얻 었다. 생성된 poly(4,4'-biphenyl-2,5-dihexoxy benzoate)는 메탄올과 증류수로 수회 세척한 후 아세톤으로 24시간동 안 속슬렛으로 세척하고 40 ℃의 진공오븐에서 건조하였 다.

# 3. 결과 및 고찰

### 3.1 중합체의 합성

중합체의 합성은 TCE/피리딘 혼합용매 중에서 합성되 었으며 단위체가 모두 첨가된 초기에는 균일한 용액상태 였으나 반응 후 3시간이 지나면서 반응물의 점성이 커지 기 시작하여 5시간이 지나자 젤화와 동시에 자석교반봉 이 정지되었다. 이때 생성된 중합체는 불용불융의 상태를 나타내었는데 이는 중합체의 분자량이 급격히 증가하여 물리적가교가 일어나는 것으로 생각된다. 이러한 현상은 수차례의 반응에서 재현성을 나타내었다. 따라서 중합체 를 얻기 위해서는 교반이 멈추기 직전에 비용매인 메탄 올에 떨어뜨려 침전을 얻는다.

생성된 중합체의 IR 스펙트럼의 결과, 단량체의 3400 cm<sup>-1</sup>의 OH 신축진동 피이크가 사라지고 카르복실산의 C=O 피이크가 1690 cm<sup>-1</sup>에서 에스테르의 C=O 피이크인 1720 cm<sup>-1</sup>로 이동된 것으로서 중합체의 생성을 확인하였다.

<sup>1</sup>H-NMR(CDCl<sub>3</sub>) 스펙트럼의 경우 δ 7.8(CO-C<sub>6</sub>H<sub>2</sub>-), 7.3~7.6(O-C<sub>6</sub>H<sub>4</sub>-), 4.5(-OCH<sub>2</sub>-), 2.2(-OCH<sub>2</sub>-CH<sub>2</sub>-), 1.4~ 1.8(-CH<sub>2</sub>-), 0.98(-CH<sub>3</sub>)에서 보이는 각각의 피이크의 면적 비를 중합체 구조와 비교했을 때 정량적으로 일치함으로 써 중합체가 합성되었음을 확인하였다.

합성된 중합체들의 수율은 78.2~89.1% 범위를 나타내 었다.(표 1) 특히 P-0 중합체를 제외한 모든 중합체들은 반응이 진행되는 동안 반응용매 내에 균일한 용액상태가 유지되어 비교적 높은 분자량의 중합체가 생성될 수 있었 음을 다음의 점도측정을 통하여 확인할 수 있었다.

#### 3.2 점도측정 및 용해도조사

생성된 중합체의 고유점성도 값(n\_lnh.)은 TCE를 용매로 하여 30 ℃ 항온조에서 Ubbelohde 모세관점도계로 측정되 었으며 표 1에 그 결과를 나타내었다. 중합체 P-0의 경우 적당한 용매를 찾지 못하여 측정되지 못하였다. 용액점성 도가 측정된 중합체 중 P-2와 P-10은 0.51과 0.46 dL/g으 로서 낮은 점성도를 나타내었으나, 그 외의 중합체들은 2.09에서 2.41 dL/g 사이의 값으로 측정됨으로써 비교적 높은 분자량의 중합체들이 합성되었음을 보여 주고 있다.

표 2는 중합체들의 용해도를 조사한 결과로서, 곁사슬 이 없는 중합체인 P-0는 본 실험에서 사용된 모든 유기용 매 내에서 용해되지 않았고, 황산 내에서만 용해됨을 확인 할 수 있었다. 일반적으로 막대형의 전방향족 폴리에스터 는 유기용매에 잘 녹지 않고 황산과 같은 강산에만 용해되 는 것으로 알려져 있다.[16] 그러나 알콕시 곁사슬이 있는 중합체들은 곁사슬의 길이가 길어질수록 용해성이 좋아짐 을 알 수 있다. 이는 서론에서 언급하였듯이 벌키한 곁사 슬이 분자간 결합력을 약화시킨 결과임을 알 수 있다.

| [표 1] 궁업세크 구물과 공핵점/3도 |              |                  |  |  |  |
|-----------------------|--------------|------------------|--|--|--|
| Polymers<br>(P-n)     | yield<br>(%) | $\eta_{inh}{}^a$ |  |  |  |
| P-0                   | 86.3         | -                |  |  |  |
| P-2                   | 78.2         | 0.51             |  |  |  |
| P-5                   | 84.0         | 2.09             |  |  |  |
| P-6                   | 89.1         | 2.41             |  |  |  |
| P-7                   | 86.1         | 2.27             |  |  |  |
| P-8                   | 88.3         | 2.40             |  |  |  |
| P-10                  | 82.6         | 0.46             |  |  |  |
| P-12                  | 84.8         | 2.20             |  |  |  |
| -                     |              |                  |  |  |  |

[ㅠ 4] 즈치케이 스이카 이에거니며

<sup>a</sup> Inherent viscosities were measured at a concentration of 0.5 g/dl in TCE at 30  $^{\circ}$ C.

**[표 2]** 중합체의 용해도<sup>\*</sup>

| Polymers<br>(n) | CCl <sub>4</sub> | Toluene          | CHCl <sub>3</sub> | TCE | DMF              | $H_2SO_4$ |
|-----------------|------------------|------------------|-------------------|-----|------------------|-----------|
| P-0             | ×                | ×                | ×                 | ×   | ×                | 0         |
| P-2             | ×                | $\bigtriangleup$ | $\bigtriangleup$  | 0   | ×                | 0         |
| P-5             | ×                | $\bigtriangleup$ | 0                 | 0   | ×                | 0         |
| P-6             | ×                | 0                | 0                 | 0   | $\bigtriangleup$ | 0         |
| P-7             | ×                | 0                | 0                 | 0   | $\bigtriangleup$ | 0         |
| P-8             | ×                | 0                | 0                 | 0   | 0                | 0         |
| P-10            | $\bigtriangleup$ | 0                | 0                 | 0   | 0                | 0         |
| P-12            | 0                | 0                | 0                 | 0   | 0                | 0         |

 $\bigcirc$  : Soluble on heating

 $\triangle$  : Partially soluble on heating

 $\times$  : Insoluble

#### 3.3 열적성질

그림 2는 10 °C/min의 가열속도로 측정된 DSC 열곡선 이며, 그림 3과 표 3은 DSC 열분석 결과들을 정리한 것 이다.

곁사슬이 없는 중합체인 P-0는 사슬의 단단한 구조로 인하여 유리전이온도 (T<sub>g</sub>) 이외의 상전이온도는 확인되지 않았다. 곁사슬이 있는 중합체들의 경우, T<sub>g</sub>와 3개의 상전 이 피이크를 보여 주고 있다. T<sub>g</sub> 이외의 3개의 피이크를 살펴보면, 가장 낮은 온도의 피이크는 고체상으로부터 sanidic 액정상으로의 전이 (T<sub>m1</sub>)에 의한 것이며, 중간온도 의 피이크는 sanidic 액정상으로부터 nematic 액정상으로 의 전이 (T<sub>m2</sub>)를, 가장 높은 온도에서의 피이크는 nematic 액정상으로부터 등방성화로의 전이온도 (T<sub>i</sub>)를 나타내고 있다. 이와 같은 상전이에 대한 연구는 Kricheldorf 등[18] 에 의해서도 수행되었으며, 본 연구의 중합체 P-8, P-12 와 동일한 구조의 중합체들에 대한 그들의 층 구조에 대 한 보고에 의하면, 중합체들은 comb-like 구조에 의하여 sanidic 액정상과 nematic 액정상을 나타내고 있음을 보 고하였다. 그리고 Tg를 제외한 전이온도들은 중합체의 곁 사슬의 길이가 길어질수록 낮아지는 현상을 보여 주고 있다. 이는 전방향족 주사슬에 결합되어 있는 지방족 곁 사슬의 존재가 주사슬의 패킹을 방해하는 역할을 함으로 써 중합체들은 더 낮은 열전이온도를 갖게 된다. 이는 사 슬의 길이가 길어질수록 벌키한 정도가 더 크게 되고 주 사슬 간의 거리가 더 멀어 지게 되는 것에 기인한다.



[그림 2] 중합체의 DSC 열곡선 (10℃/min).

또한, 중합체들 중 낮은 분자량을 갖을 것으로 예상되 는 중합체 P-2, P-10의 열전이온도들을 다른 중합체들의 것과 비교해 볼 때 중합체들의 열전이 거동은 분자량에 의존적임을 알 수 있다.

| Polymers<br>(n) | Tg<br>(℃) | T <sub>m1</sub><br>(℃) | T <sub>m2</sub><br>(℃) | T <sub>i</sub><br>(℃) |
|-----------------|-----------|------------------------|------------------------|-----------------------|
| P-0             | 91.7      | -                      | -                      | -                     |
| P-2             | 48.4      | 215.3                  | 290.0                  | 330.0                 |
| P-5             | 76.3      | 197.0                  | 303.9                  | 360.6                 |
| P-6             | 66.5      | 181.0                  | 298.6                  | 358.0                 |
| P-7             | 45.0      | 177.8                  | 275.0                  | 341.8                 |
| P-8             | 50.9      | 123.4                  | 256.8                  | 332.1                 |
| P-10            | 68.4      | 96.6                   | 201.8                  | 293.1                 |
| P-12            | 57.9      | 107.6                  | 212.2                  | 283.0                 |

[표 3] 중합체의 열적성질



[그림 3] 중합체 곁사슬의 길이에 따른 전이온도.



[그림 4] 중합체의 TGA 열곡선 (10℃/min).

그림 4는 합성된 중합체들의 열분해안정성의 관찰을 위한 TGA 실험 결과로서 각 중합체들의 5wt% 무게감량 을 보이는 초기분해온도는 곁사슬이 없는 중합체 P-0는 418℃, 곁사슬이 있는 중합체들은 346~379 ℃로서 곁사 슬의 존재가 중합체의 열안정성을 떨어뜨리는 것을 확인 할 수 있으며, 이는 Han 등[8]의 실험자료와 유사한 결과 를 보여주고 있다. 또한 700 ℃에서의 잔류량은 29.3~ 9.5% 범위로서 분자 중 방향족 함량이 클수록 더 많은 잔 류량을 나타내었다.

#### 3.4 액정상의 관찰

중합체들의 액정성의 확인은 DSC 열곡선을 참고로 하여 용용온도(melting point, mp) 측정기와 편광현미경 을 이용하였다. mp 측정기에 의한 관찰에서 합성된 중합 체들 중 곁사슬을 갖는 중합체들은 가열에 의해 온도가 상승함에 따라 고체상에서 점성이 큰 sanidic 액정상을 거쳐 유동성을 갖는 nematic 액정상을 지나 등방화 또는 분해되는 됨을 관찰하였다. 중합체들은 sanidic 액정상의 온도범위에서는 높은 용융점성으로 인하여 stiropalescence 는 관찰하지 못하였다. 그러나 nematic 액정상 온도범위 에서는 온도가 상승할수록 활발한 유동성과 강렬한 stiropalescence를 보여 주었다. 편광현미경 관찰 결과, sanidic 액정상 온도범위에서 복굴절현상을 관찰할 수 있 었으며, nematic 액정상 온도범위에서는 매우 활발한 흐 름현상을 관찰할 수 있었다.



[그림 5] 중합체(P-8)의 편광현미경사진 (배율200x).

그림 5는 280 ℃에서 촬영된 중합체 P-8의 편광현미경 사진으로서 P-0 중합체를 제외한 모든 중합체들에서 유 사한 thread-like schlieren texture의 nematic 액정상을 보 여 주었다.

#### 3.5 X-선 분석

그림 6은 중합체의 x-선 회절곡선으로써 곁사슬의 존 재여부 및 길이에 따라 회절곡선의 패턴이 달라짐을 볼 수 있다. 곁사슬이 없는 중합체, P-0는 20=19.7°에서 예 리한 피이크를 보여 주고 있으며, 이는 중합체 주사슬간 패킹에 의한 얻어진 결정격자 사이의 간격을 나타내고 있으며 Bragg 법칙에 의해 계산된 사슬사이의 거리는 4.5 Å을 나타내었다. 그리고 곁사슬을 갖는 중합체들 중 P-2 를 제외한 나머지 중합체들의 저각도 (20=4.8~6.9°)에서 관찰되어진 피이크는 주사슬들 간의 패킹으로 인한 결정 격자 사이의 거리를 나타내고 있으며, 곁사슬의 길이가 길어질수록 계산된 주사슬의 간격은 약 12.8~18.4Å으 로 멀어 짐을 알 수 있었다. 이러한 결과는 Han 등[8] 및 Lee 등[16]의 보고와 일치하는 내용으로, 중합체 주사슬 이 층구조로 결정화되어 있음을 추측할 수 있다.



[그림 6] 중합체의 X-선 회절곡선.

또한 20=20° 부근에서의 피이크는 알킬 곁사슬들간의 패킹으로 인한 결정화로 생각되며, 중합체 P-2,5,6,7,8은 짧은 곁사슬로 인하여 결정을 이루지 못하여 halo 타입의 회절곡선을 나타내었고, 곁사슬의 길이가 긴 중합체 P-10 과 12는 긴 곁사슬기들의 결정화에 의한 결정구조로 인 하여 20=21.2°에서 날카로운 회절곡선을 보여주고 있다.

### 4. 결론

본 연구에서 합성된 중합체의 물성을 조사한 결론은 다음과 같다. 곁사슬을 갖는 중합체들은 모두 sanidic 액 정상과 nematic 액정상을 나타내는 액정중합체였으며, 고 유점성도는 P-2와 P-10을 제외하고, 모두 2 dL/g이상의 고분자량의 중합체가 합성되었다. 알콕시 곁사슬의 길이 가 길어질수록 유기용매에 대한 용해도는 향상되었으며, 용융전이온도들은 낮아지는 경향을 나타내었다. 따라서 전방향족 중합체에 알킬 곁사슬을 도입함으로써 용해 및 용융특성을 개선시킬 수 있음을 보여 주었다. 그러나 알 킬 곁사슬기의 존재가 전방향족 중합체의 열안정성을 낮 추는 것을 알 수 있었다.

#### 참고문헌

 H.Han and P.K.Bhowmik, "Wholly aromatic liquid -crystalline polyesters", *Prog. Polym. Sci.*, 22, 1431-1502, 1997.

- [2] Y-W.Kwon, D.H.Choi, and J-I.Jin, "Liquid Crystalline Aromatic Polyesters" *polymer(Korea)*, 29, 523-535, 2005.
- [3] D.Y.Kim, "Main Chain Liquid Crystalline Polymers" Polymer Science and Technology, 2, 415-423, 1991.
- [4] W.Grasser, H.-W.Schmidt, and R.Giesa, "Thermotropic liquid crystalline copolyesters with non-coplanar biphenylene units tailored-for blend fiber processing with PET", *Polymer*, 42, 8529-8540, 2001.
- [5] M.M.Marugan, E.Perez, R.Benavente, A.Bello, and J.M.Perena, "Solubility parameters of thermotropic polybibenzoates with various spacers", *Eur. Polym. J.*, 28, 1159-1163, 1992.
- [6] J.Watanabe, M.Hayashi, A.Morita, and M.Tokito, "Thermotropic liquid crystals of main-chain polyesters having a mesogenic 4,4'-biphenyldicarboxylate unit", *Macromolecules*, 28, 8073-8079, 1995.
- [7] M.Ballauff, "Rigid rod polymers having flexible side chains,1", *Makroml. Chem., Rapid Commun.,* 7, 407-414, 1986.
- [8] C.Han, O-C.Jeon, Y-J.Kim, D-S.Yun, K-Y.Sung, and J-K.Choi, "Syntheses and Properties of New Wholly Aromatic Polyesters Having Alkoxy Group in the Side Chains", J. Korean Ind. Eng. Chem., 11, 366-370, 2000.
- [9] L.L.Lin and J.L.Hong, "Semi-rigid thermotropic polyester containing a rigid, bent spirobicromane moieties-primary characterization and the thermal behavior", *Polymer*, 41, 4501-4512, 2000.
- [10] M.Bagheri, Kh.Didehban, Z.Rezvani, and A.Entezami, "Thermotropic polyesters: Part 1. Synthesis, characterization and thermal transition of poly [4,4'-bis (ω-alkoxy) biphenyl isophthalate]", *Eur. Polym. J.* 40, 865-871, 2004.
- [11] M.Bagheri, Kh.Didehban, and A.Entezami, "Thermotropic Polyesters (Part 3): Synthesis, Characterization and Thermal Transition of Random Copolyesters Containing Terephthalate and Isophthalate Units", *Iran. Polym. J.*, 13, 327-334, 2004.
- [12] U.Caruso, P.Jannelli, S.Pragliola, A.Roviello, and A,Sirigu, "Mesomorphism in Segmented-Chain Polymers Containing Flexible Substituents in the Rigid Moiety", *Macromolecules*, 28, 6089-6094, 1995.
- [13] P.Iannelli, U.Caruso, S.Pragliola, A.Roviello, and A.Sirigu, "Rigid-rod liquid crystalline polyesters based on n-alkoxyterephthalic acid and 4,4-dihydroxybiphenyl" *J. Polym. Sci., Polym. Chem.*, 36, 263-267, 1998.
- [14] M.S.Bang, "Synthesis and Properties of Aromatic Poly(ether-ether-ester)s having Flexible Side Chain" J.

the Korea Academia-Industrial Cooperation Society, 10, 3060-3065, 2009.

- [15] M.S.Bang, "Synthesis and Properties of Liquid Crystalline Copolymers with Ether-ether-ester Linkage in Main Chain" J. the Korea Academia-Industrial Cooperation Society, 11, 1367-1372, 2010.
- [16] K.S.Lee, B.W.Lee, J.C.Jung, and S.M.Lee, "Synthesis and Properties of Processible Wholly Aromatic Polyesters : New Types of Liquid Crystalline Polymers" *Polymer(Korea)*, 13, 47-55, 1989.
- [17] F.Higashi, T.Mashimo, and I.Takahashi, "Preparation of aromatic polyesters by direct polycondensation with thionyl chloride in pyridine" *J. Polym. Sci., Polym. Chem*, 24, 97-102, 1986.
- [18] H.R,Kricheldorf, and D.F.Wulff, "Layer structure 12. Chiral sanidic polyesters derived from 2,5-bis(hexadecyloxy) terephthalic acid, 2,5-bis((S)-2-methylbutoxy)terephthalic acid, and 4,4'-dihydroxybiphenyls" *Polymer*, 39, 2683-2692, 1998.

# 이 응 재(Eung-Jae Lee)

#### [정회원]



- 2004년 2월 : 조선대학교 고분자공학과 (공학석사)
  2010년 8월 : 조선대학교첨단부 품소재공학과 (박사수료)
- 2009년 4월 ~ 현재 : 조선이공
   대학 생명환경화공과 전임강사

<관심분야> 고분자합성, 고분자블렌드

#### 방 문 수(Moon-Soo Bang)

[정회원]



- 1989년 2월 : 조선대학교 화학공학과 (공학석사)
  1994년 8월 : 조선대학교
- 화학공학과 (공학박사)
- 2005년 3월 ~ 현재 : 공주대학
   교 신소재공학부 교수

<관심분야> 고분자합성, 고성능고분자재료