DOI QR코드

DOI QR Code

Healing Effects of Ginsenoside Rg1 on Experimental Open Wound in Rat

흰쥐의 외과적 창상에 대한 Ginsenoside Rg1의 치료효과

  • 임애경 ((재)대구테크노파크 바이오산업지원센터) ;
  • 김길수 (경북대학교 수의과대학) ;
  • 박수정 ((재)대구테크노파크 바이오산업지원센터) ;
  • 홍주헌 (대구가톨릭대학교 외식식품산업학부) ;
  • 최향자 (소리소 화장품) ;
  • 김대익 ((재)대구테크노파크 바이오산업지원센터)
  • Received : 2010.03.19
  • Accepted : 2010.10.11
  • Published : 2010.10.31

Abstract

This study was performed to investigate the effect of ginsenoside Rg1 treatment on wound healing using SD rats by generating four full-thickness skin wounds on the dorsum. In the Rg1-treated groups (5,000 and 10,000 ppm), area of wounds and macroscopic inflammatory signs were significantly decreased compared to control group throughout the experimental period in a concentration dependent manner. Histological appearance after 20 days of treatment with Rg1 revealed the formation of epithelial layer, hair follicles and progressive angiogenesis and an increase in collagen and granulation as compared to control group. Rg1 treatment resulted in the increased expression of the vascular endothelial growth factor (VEGF) mRNA and reduced expression of transforming growth factor beta (TGF-$\beta$) mRNA in wounded skin compared to control group. The expression levels of VEGF and TGF-$\beta$ mRNA in the Rg1-treated groups were similar to those of Fucidin(R) ointment-treated group. These results suggested that Rg1 should be helpful for the promotion of wound healing.

상처치료 과정 중 ginsenoside Rg1(5,000 ppm, 10,000 ppm) 처리에 의한 효력을 평가하기 위해 SD rats의 등쪽 피부에 biopsy punch를 이용한 4개의 창상을 유발 후, 이 과정에서 일어나는 피부조직의 변화를 관찰하였다. 상처에 Rg1의 도포로 인해 창상치료과정이 활발해짐을 관찰할 수 있었다. Rg1을 처리한 군에서 절개된 상처의 표피화와 수축이 더 빨라졌고 창상면적에 있어서도 양성대조군인 시판연고 도포군과 비교하여 유의하게 줄어들었다. 염색한 조직의 현미경 관찰 결과에서는 정상대조군에서 볼 수 있는 완전한 상피층은 찾을 수 없었으나 Rg1 처리군에서 모낭과 신생혈관이 관찰되었고 상피층의 회복조짐도 관찰되었다. 병변의 TGF-$\beta$ 및 VEGF의 발현량을 조사한 결과 Rg1의 도포에 의하여 더 많은 VEGF의 발현을 유도하고 TGF-$\beta$의 활성화를 차단하여 반흔 형성을 감소시켰다. 이러한 결과를 종합하여 Rg1은 흰쥐의 외과적 창상에 치료효과가 있다고 사료된다.

Keywords

References

  1. Moon KS. 1985. Ingredient and use of medical plant. Il Wol press Co., Ltd., Seoul, Korea. p 500.
  2. Matsuda H, Kobo M, Mizuno M. 1987. Pharmacological study on Panax ginseng C.A. Meyer (VIII). Cardiovascular effect of red ginseng. Yakugaku Zasshi 41: 125-134.
  3. Nam KY. 1996. Contemporary Korean ginseng (chemical constituents and pharmacological activity). ChunIl printing Co., Seoul, Korea. p 56.
  4. Choi JH, Oh SK. 1983. Studies on the anti-aging action of Korean ginseng. Korean J Food & Nutr 12: 323-335.
  5. Jung NP, Jin SH. 1996. Studies on the physiological and biochemical effects of Korean ginseng. Korean J Ginseng Sci 20: 431-471.
  6. Zhang S, Yao X, Chen Y, Cui C, Tezuka T, Kikuchi T. 1989. Ginsenoside Ia, a novel saponin from the leaves of Panax ginseng. Chem Pharm Bull 37: 1966-1968. https://doi.org/10.1248/cpb.37.1966
  7. Han JH, Park SJ, Ahn CN, Wee JJ, Kim KY, Park SH. 2004. Nutritional composition, ginsenoside content and fundamental safety evaluation with leaf and stem extract of Panax ginseng. J Korean Soc Food Sci Nutr 33: 778-784. https://doi.org/10.3746/jkfn.2004.33.5.778
  8. Horrest I. 1983. Current concepts in soft connective tissue wound healing. Br J Sung 70: 133-140. https://doi.org/10.1002/bjs.1800700302
  9. Peacock EE. 1984. Wound repair . 3rd ed. WB Saunders, Philadelpia, USA. p 38-55.
  10. Hatamochi AJ, Mori K, Ueki H. 1994. Role of cytokines in controlling connective tissue gene expression. Arch Dermatol Res 341: 738-746.
  11. Hiroshi U, Haruo Y, Ichiro T, Naoki K, Mitsunobu M, Masahiro O, Tsuyoshi K, Toru F. 1999. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20: 1407-1414. https://doi.org/10.1016/S0142-9612(99)00046-0
  12. Christophers E, Mrowietz U. 2003. Psoriasis. In Fitzpatrick’s Dermatology in General Medicine. Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI, eds. 6th ed. McGraw-Hill, NY, USA. p 407-427.
  13. Ohno N, Miura NN, Chiba N, Adachi Y, Yadomae T. 1995. Comparison of the immunopharmacological activities of triple and single helical schizophyllan in mice. Biol Pharm Bull 18: 1242-1247. https://doi.org/10.1248/bpb.18.1242
  14. Singer AJ, Clark RA. 1999. Cutaneous wound healing. N Engl J Med 341: 738-746. https://doi.org/10.1056/NEJM199909023411006
  15. Hasan W, Zhang R, Lin M, Warn JD, Smith PG. 2000. Coordinate expression of NGF and α-smooth muscle actin mRNA and protein in cutaneous wound tissue of developing and adult rats. Cell Tissue Res 300: 97-109.
  16. Chuang WC, Sheu SJ. 1994. Determination of ginsenoside in ginseng crude extracts by high-performance liquid chromatography. J Chromatogr A 685: 243-251 https://doi.org/10.1016/0021-9673(94)00724-1
  17. Choi SH, Suh BS, Oh KS, Kim KS. 2006. Ginsenosides contents of Korean ginseng and ginseng products. Korean J Food Culture 21: 559-564.
  18. Han CD, Lee WM, Lee HB, Hahn MH, Yu WW. 2003. Effect of steroid and nonsteroidal anti-inflammatory drugs an acute wound healing and collagen synthesis in rat skin. J Korean Orthop Assoc 38: 393-397 https://doi.org/10.4055/jkoa.2003.38.4.393
  19. Brody GS, Peng ST, Landel RF. 1981. The etiology of hypertrophic scar contracture: another view. Plast Reconstr Surg 67: 673-684. https://doi.org/10.1097/00006534-198105000-00021
  20. Coulombe PA. 2003. Wound epithelialization: accelerating the pace of discovery. J Invest Dermatol 121: 219-230. https://doi.org/10.1046/j.1523-1747.2003.12387.x
  21. Martin P. 1997. Wound healing-aiming for perfect skin regeneration. Science 276: 75-81. https://doi.org/10.1126/science.276.5309.75
  22. Schilling JA. 1968. Wound healing. Physiol Rev 48: 374-423. https://doi.org/10.1152/physrev.1968.48.2.374
  23. Park JS, Kim JY, Cho JY, Kang JS, Yu YH. 2000. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts. Biol Pharm Bull 23: 1517-1520. https://doi.org/10.1248/bpb.23.1517
  24. Schmitt-Graff A, Desmouliere A, Gabbiani G. 1994. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 425: 3-24.
  25. Gabbiani G. 1996. The cellular derivation and the life span of the myofibroblast. Pathol Res Pract 192: 708-711. https://doi.org/10.1016/S0344-0338(96)80092-6
  26. Detmar MD, Brown LF, Berse B, Jacman RW, Elicker BM, Dvorak HF, Claffey KP. 1997. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J Invest Dermatol 108: 263-268. https://doi.org/10.1111/1523-1747.ep12286453
  27. Kerr LD, Miller DB, Matrisian LM. 1990. $TGF-{\beta}1$ inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 61: 267-278. https://doi.org/10.1016/0092-8674(90)90807-Q
  28. Uchida S, Sakai A, Kudo H. 2003. Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and marrow after drill-hole injury in rat. Bone 32: 491-501. https://doi.org/10.1016/S8756-3282(03)00053-X

Cited by

  1. Regeneration Effects of Lespedeza cuneata Ethanol Extract on Experimental Open Wound in Rat vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.516
  2. The Effect of Ulmus Root-bark Dressing in Fibroblast Growth Factor and Vascular Endothelial Growth Factor of Induced Pressure Ulcer in Rats vol.15, pp.4, 2013, https://doi.org/10.7586/jkbns.2013.15.4.257