DOI QR코드

DOI QR Code

Sulfate Reduction of Rice Paddy, Foreshore, and Reservoir Soil

논과 갯벌과 저수지 토양의 황산염 환원

  • 김민정 (한남대학교 생명나노과학대학 생명공학과) ;
  • 박경량 (한남대학교 생명나노과학대학 생명공학과)
  • Received : 2010.01.25
  • Accepted : 2010.08.17
  • Published : 2010.10.30

Abstract

Sulfate reduction rates (SRR) using $^{35}SO_4^{-2}$, sulfide producing rates (SPR) using gas chromatography, the number of sulfate reducing bacteria (SRB) using the most probable number (MPN) method, and soil components (moisture, ammonium, total nitrogen, total organic carbon, total carbon, total inorganic phosphorus, total phosphorus, and sulfate) using standard methods in the organic/conventional rice paddy soils, cleaned/polluted reservoir soils, and cleaned/polluted foreshore soils were studied with the change of seasons. The average SRR was more related to the number of SRB and soil components (especially nitrogen and phosphorus) than sulfate concentration. SRR was also recorded to be highest in October soil samples. However, SPR was higher in foreshore soils containing a high concentration sulfate than in fresh water soils, and it was also recorded to be higher in the polluted areas than in clean areas. From these results, we can conclude that the SRR and SPR of anaerobic environments were affected by the number of SRB, soil components and temperature.

유기농법과 관행 농법토양, 청정 갯벌과 오염 갯벌토양 그리고 청정 담수와 오염 담수 토양을 이용하여 계절의 변화에 따라 $^{35}SO_4^{-2}$을 이용한 황산염 환원율, 가스크로마토그래피를 이용한 황화수소 생성량, 최적확수 시험법을 이용한 황산염 환원세균의 분포, 공정시험법을 이용한 수분, 암모니아, 총 질소, 총 유기탄소, 총 탄소, 총 무기인, 총 인, 황산염 농도의 토양 성분조사를 실시하였다. 그 결과 황산염 환원율은 황산염의 농도보다 황산염 환원세균의 군집크기와 질소와 인과 같은 토양 성분과 서로 밀접한 관련이 있는 것으로 확인되었다. 그리고 황화수소 생성량은 10월 토양에서 가장 높게 나타났으나, 담수 토양 보다는 높은 황산염 농도를 함유한 갯벌 토양에서 더 높게 나타났고, 청정 지역보다는 오염 지역 토양에서 높은 값을 나타냈다. 따라서 혐기환경의 황산염 환원율과 황화수소 생성량은 황산염 환원세균의 군집과 토양 내 여러 가지 성분 그리고 온도에 의해 영향 받는 것을 확인하였다.

Keywords

References

  1. Bak, F. and N. Pfennig. 1991. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiology Ecology 85, 31-42. https://doi.org/10.1111/j.1574-6968.1991.tb04695.x
  2. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.
  3. Canfield, D. E. 1989. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in anoxic environments. Deep-Sea Res. 36, 121-138. https://doi.org/10.1016/0198-0149(89)90022-8
  4. Cappenberg, T. E. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. Antonie van Leeuwenhoek 40, 285-295. https://doi.org/10.1007/BF00394387
  5. Castro, H. F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages. Ph. D. Thesis. 27-37.
  6. Detmers, J., V. Brüchert, K. S. Habicht, and J. Kuever. 2001. Diversity of Sulfur Isotope Fractionations by Sulfate Reducing Prokaryotes. Appl. Environ. Microbiol. 67, 888-894. https://doi.org/10.1128/AEM.67.2.888-894.2001
  7. Douglas, G. C. and R. P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in Anaerobic Carbon metabolism Limnology and Oceanography 33, 725-749. https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  8. Fossing, H. and B. B. Jorgensen. 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205-222.
  9. Hansen, T. A. 1994. Metabolism of sulfate-reducing bacteria. Antonie van Leeuwenhoek 66, 165-185. https://doi.org/10.1007/BF00871638
  10. Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1, 5-27. https://doi.org/10.1007/BF02181118
  11. Ingvorsen, K., J. G. Zeikus, and T. D. Brock. 1981. Dynamics of Bacterial Sulfate Reduction in a Eutrophic Lake. Appl. Environ. Microbiol. 42, 1029-1036.
  12. Jain, D. K. 1995. Evaluation of the semisolid Postgate’'s B medium for enumerating sulfate-reducing bacteria. J. Microbiol. Methods 22, 27-38. https://doi.org/10.1016/0167-7012(94)00061-B
  13. Jorgensen, B. B. and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. Mar. 57, 847-856.
  14. Kim H. S., J. S. Cho, and K. R. Park. 2009. Methane production and T-RFLP patterns of methanogenic bacteria dependent on agricultural methods. Korean J. of Microbiol. 45, 17-25.
  15. Ronald, S. 1982. Oremland and sandra polcin methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuary sediments. Appl. Envir. Microbiol. 44. 1270-1276.
  16. Smith, R. L. and M. J. Klug. 1981. Electron donors utilized by sulfate reducing bacteria in eutrophic lake sediments. Appl. Environ. Microbiol. 42, 116-121.
  17. Sorensen, J., D. Christensen, and B. B. Jørgensen. 1981. Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42, 5-11.
  18. Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: Comparison of enumeration media. J. Microbiol. Methods 10, 83-90. https://doi.org/10.1016/0167-7012(89)90004-3
  19. Touzel, J. P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus Mazei strain MC3. FEMS Microbial. Lett. 16, 241-245. https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
  20. Ulrich, G. A., L. R. Krumholz, and J. M. Suflita. 1997. A rapid and simple method for estimating sulfate reduction. Appl. Environ. Microbiol. 63, 1627-1630.
  21. Vester, F. and K. Ingvorsen. 1998. Improved most probable number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol. 64, 1700-1707.
  22. Ward, D. M. and M. R. Winefry. 1985. Interactions between methanogenic and sulphate reducing bacteria in sediments. Adv. Aquat. Microbiol. 3, 141-179.
  23. Westermann, P. 1993. Wetland and swamp microbiology. pp. 215-238, In Ford, T. E. (ed.), Aquatic microbiology. Blackwell Sci. Publ., Cambridge, MA.
  24. Widdel, F. and T. A. Hansen. 1992. The dissimilatory sulfate- and sulfur reducing bacteria, pp. 583-624, In Balows, A., H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The prokaryotes (2nd ed.), Vol. I, Springer, New York, N.Y.
  25. Wind, T. and R. Conrad. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253-278. https://doi.org/10.1023/A:1005760506957

Cited by

  1. Analysis of Environmental Properties of Paddy Soils with Regard to Seasonal Variation and Farming Methods vol.39, pp.6, 2017, https://doi.org/10.4491/KSEE.2017.39.6.311