DOI QR코드

DOI QR Code

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong (Korea Food and Drug Administration) ;
  • Cho, Hea-Young (Korea Food and Drug Administration) ;
  • Cha, Ji-Hun (National Institute of Food and Drug Safety Evaluation) ;
  • Kwon, Kyoung-Jin (National Institute of Food and Drug Safety Evaluation) ;
  • Jeon, Seol-Hee (National Institute of Food and Drug Safety Evaluation) ;
  • Jo, Su-Hyun (Department of Physiology and Institute of Bioscience and Biotechnology, School of Medicine, Kangwon National University) ;
  • Kim, Eun-Jung (National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Hye-Soo (Korea Food and Drug Administration) ;
  • Chung, Hye-Ju (Korea Food and Drug Administration)
  • Received : 2010.07.27
  • Accepted : 2010.09.14
  • Published : 2010.10.31

Abstract

Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Keywords

References

  1. Ajay, J., Tara, D., Yogesh, V., Changcong, C. and Yan, G. X. (2004). Preclinical strategies to assess QT liability and torsadogenic potential of new drugs: the role of experimental models. J. Electrocardiol. 37, 7-14. https://doi.org/10.1016/j.jelectrocard.2004.08.003
  2. Andrew, T. S. and Lewis, B. K. (1995). Status of safety pharmacology in the pharmaceutical industry-1995. Drug Develop. Research 35, 166-172. https://doi.org/10.1002/ddr.430350310
  3. Cordes, J. S., Sun, Z., Lloyd, D. B., Bradley, J. A., Opsahl, A. C., Tengowski, M. W., Chen, X. and Zhou, J. (2005). Pentamidine reduces hERG expression to prolong the QT interval. Br. J. Pharmacol. 145, 15-23. https://doi.org/10.1038/sj.bjp.0706140
  4. De Ponti, F., Poluzzi, E., Vaccheri, A., Bergman, U., Bjerrum, L., Ferguson, J., Frenz, K. J., McManus, P., Schubert, I., Selke, G., Terzis-Vaslamatzis, G. and Montanaro, N. (2002). Nonantiarrhythmic drugs prolonging the QT interval: considerable use in seven countries. Br. J. Clin. Pharmacol. 54, 171-177. https://doi.org/10.1046/j.1365-2125.2002.01617.x
  5. Dennis, A., Wang, L., Wan, X. and Ficker, E. (2007). hERG channel trafficking: novel targets in drug-induced long QT syndrome. Biochem. Soc. Transactions 35, 1060-1063.
  6. Fermini, B. and Fossa, A. A. (2003). The impact of drug-induced QT interval prolongation on drug discovery and development. Nature Rev. 2, 439-447. https://doi.org/10.1038/nrd1108
  7. Ficker, E., Dennis, A. T., Wang, L. and Brown, A. M. (2003). Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ. Res. 92, e87-100. https://doi.org/10.1161/01.RES.0000079028.31393.15
  8. Finlayson, K., Witchel, H. J., McCulloch, J. and Sharkey, J. (2004). Acquired QT interval prolongation and hERG: implications for drug discovery and development. Eur. J. Pharmacol. 500, 129-142. https://doi.org/10.1016/j.ejphar.2004.07.019
  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch clamp techniques for highresolution current recording from cells and cell-free membrane- patches. Pflugers Arch. 391, 85-100. https://doi.org/10.1007/BF00656997
  10. ICH Harmonized Tripartite Guideline. (2000). Safety pharmacology studies for human pharmaceuticals S7A, step 4.
  11. ICH Harmonized Tripartite Guideline. (2005). The nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals S7B, step 4.
  12. Kuryshev, Y. A., Ficker, E., Wang, L., Hawryluk, P., Dennis, A. T., Wible, B. A., Brown, A. M., Kang, J., Chen, X. L., Sawamura, K., Reynolds, W. and Rampe, D. (2005). Pentamidine- induced long QT syndrome and block of hERG trafficking. J. Pharmacol. Exp. Ther. 312, 316-323. https://doi.org/10.1124/jpet.104.073692
  13. Picard, S. and Lacroix, P. (2003). QT interval prolongation and cardiac risk assessment for novel drugs. Curr. Opin. Investig. Drugs 4, 303-308.
  14. Rashmi, R. S. (2002). The significance of QT interval in drug development. Br. J. Clin. Pharmacol. 54, 188-202. https://doi.org/10.1046/j.1365-2125.2002.01627.x
  15. Redern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., Mackenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan, A. T., Wallis, R., Camm, A. J. and Hammond, T. G. (2004). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs : evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32-45.
  16. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan, A. T., Wallis, R., Camm, A. J. and Hammond, T. G. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32-45. https://doi.org/10.1016/S0008-6363(02)00846-5
  17. Roden, D. M. and Spooner, P. M. (1999). Inherited long QT syndromes: a paradigm for understanding arrhythmogenesis. J. Cardiovasc. Electrophysiol. 10, 1664-1683. https://doi.org/10.1111/j.1540-8167.1999.tb00231.x
  18. Sanguinetti, M. C., Chen, J., Fernandez, D., Kamiya, K., Mitcheson, J. and Sanchez-Chapula, J. A. (2005). Physicochemical basis for binding and voltage-dependent block of hERG channels by structurally diverse drugs. Novartis Found. Symp. 266, 159-166. https://doi.org/10.1002/047002142X.ch13
  19. Singh, B. N., Baky, S. H. and Nademanee, K. (1985). Second generation of calcium antagonists: The search for greater selectivity or versatility. Am. J. Cardiol. 55, 214B-221B. https://doi.org/10.1016/0002-9149(85)90634-4
  20. Trudeau, M. C., Warmke, J. W., Ganetzky, B. and Robertson, G. A. (1995). hERG, a human inward rectifier in the voltage-gated Pot. channel family. Science 269, 92-95. https://doi.org/10.1126/science.7604285
  21. Zhou, Z., Gong, Q., Epstein, M. L. and January, C. T. (1998). HERG channel dysfunction in human long QT syndrome. J. Biol. Chem. 273, 21061-21066. https://doi.org/10.1074/jbc.273.33.21061