DOI QR코드

DOI QR Code

Expression of nitric oxide synthases in the mandibular condyle of anterior repositioned rat mandibles

백서의 하악골 전방 재위치 시 하악과두 조직에서의 nitric oxide synthases 발현 양상

  • Kim, Hyun-Sook ;
  • Kim, Ho-Young (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Heo, Sung-Su (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kang, Kyang-Hwa (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 김현숙 ;
  • 김호영 (원광대학교 치과대학 치과교정학교실) ;
  • 허성수 (원광대학교 치과대학 치과교정학교실) ;
  • 강경화 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실)
  • Received : 2009.09.29
  • Accepted : 2010.03.03
  • Published : 2010.08.30

Abstract

Objective: The aim of this study was to identify the expression of nitric oxide synthases (NOS) in the mandibular condyle during mandible advancement by functional appliance and to correlate it with the histologic changes and bone remodeling. Methods: Twenty-four female, 35-day-old Sprague-Dawley rats were randomly divided into 3 experimental groups. In all experimental groups, the mandibles of the rats were kept in a continuous forward position with a fixed bite jumping appliance. The rats were sacrificed on the 3rd, 14th, and 30th days of experiment. More than 2 rats in each group were used for staining. Results: There were no remarkable histologic changes and NOS expression differences in the control group. The most prominent histologic changes occurred in the 14th day experimental group. NOS decreased in the 30th day experimental group. There was increased expression of $NOS_2$ and $NOS_3$ in all experimental groups, comparative to the control group. In all the experimental groups and control group, the expression of $NOS_2$ was greater than that of $NOS_3$. Conclusions: It is postulated that $NOS_2$ and $NOS_3$ in the mandibular condyle might play an important role in bone remodelling of the mandibular condyle.

성장기 아동의 하악과두 조직에서의 골개조 과정은 연골세포, 조골세포, 파골세포가 연관되며 nitric oxide synthase (NOS)가 중요한 매개자의 하나로 작용할 것으로 생각되나 기능성 악정형술을 이용해 하악골을 전방유도시켰을 때 하악과두에서의 골개조와 NOS의 발현에 대해서는 아직 자세히 연구되어 있지 않다. 본 연구는 하악골을 기능적으로 전방위치시켰을 때 하악과두 조직의 조직학적 변화양상에 대해 살펴보고 NOS의 발현 정도를 조사하여 상관관계를 알아보고자 하였다. 35일령의 24마리의 Sprague-Dawley 백서를 3군으로 나누었고 각 군에 있어서 5마리는 실험군으로, 3마리는 대조군으로 나누었다. 실험군은 하악골 전방유도장치를 24시간 장착한 후 3, 14, 30일에 희생하였으며 조직절편은 시상면에 평행하게 절단하였고 $NOS_2$$NOS_3$의 조직면역염색을 통해 다음과 같은 결과를 얻었다. 대조군 간에는 조직학적인 변화와 NOS의 발현 변화가 뚜렷이 관찰되지는 않았으며 실험기간에 따른 조직학적 변화는 실험 14일군에서 가장 많은 신생골 형성과 조골세포 활성을 보였으며, 실험 30일군에서는 감소하는 양상으로 나타났다. 또한 모든 실험군에서 대조군에 비해 $NOS_2$$NOS_3$의 발현이 많이 나타났으며 실험기간에 따른 비교 시 $NOS_2$$NOS_3$의 발현은 실험 14일군에서 가장 많이 나타났으며 실험 30일군에서는 감소하는 양상으로 나타났다. 전체 실험군과 대조군에서 $NOS_2$의 발현은 $NOS_3$의 발현보다 많이 나타났고 $NOS_2$는 실험군 과두의 비대연골, 연골하골에서 주로 발현되었다. $NOS_3$는 실험군 과두의 골수와 모세혈관에서 주로 발현되었다. 따라서 하악과두 내의 $NOS_2$$NOS_3$의 발현조절이 하악과두 조직의 골개조에 관여함을 시사한다.

Keywords

References

  1. Ruf S, Pancherz H. Temporomandibular joint remodeling in adolescents and young adults during Herbst treatment: A prospective longitudinal magnetic resonance imaging and cephalo-metric radiographic investigation. Am J Orthod Dentofacial Orthop 1999;115:607-18. https://doi.org/10.1016/S0889-5406(99)70285-4
  2. McNamara JA Jr. Neuromuscular and skeletal adaptations to altered function in the orofacial region. Am J Orthod 1973; 64:578-606. https://doi.org/10.1016/0002-9416(73)90290-X
  3. Pancherz H. The Herbst appliance--its biologic effects and clinical use. Am J Orthod 1985;87:1-20. https://doi.org/10.1016/0002-9416(85)90169-1
  4. Rabie AB, Zhao Z, Shen G, Hagg EU, Dr 0, Robinson W. Osteogenesis in the glenoid fossa in response to mandibular advancement. Am J Orthod Dentofacial Orthop 2001;119: 390-400. https://doi.org/10.1067/mod.2001.112875
  5. McNamara JA Jr, Carlson DS. Quantitative analysis of temporomandibular joint adaptations to protrusive function. Am J Orthod 1979;76:593-611. https://doi.org/10.1016/0002-9416(79)90206-9
  6. McNamara JA Jr, Bryan FA. Long-term mandibular adaptations to protrusive function: an experimental study in Macaca mulatta. Am J Orthod Dentofacial Orthop 1987;92:98-108. https://doi.org/10.1016/0889-5406(87)90364-7
  7. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, et al. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 1999;14:1123-31. https://doi.org/10.1359/jbmr.1999.14.7.1123
  8. Binderman 1, Shimshoni Z, Somjen D. Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif Tissue Int 1984;36(suppl 1):S82-5. https://doi.org/10.1007/BF02406139
  9. Yeh CK, Rodan GA. Tensile forces enhance prostaglandin E synthesis in osteoblastic cells grown on collagen ribbons. Calif Tissue Int 1984;36(suppl 1):S67-71. https://doi.org/10.1007/BF02406136
  10. Frangos JA, Eskin SG, McIntire LV, lves CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science 1985;227: 1477-9. https://doi.org/10.1126/science.3883488
  11. Reich KM, Mcallister TN, Gudi S, Frangos JA. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 1997;138:1014-8. https://doi.org/10.1210/en.138.3.1014
  12. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 1994;266:C628-36. https://doi.org/10.1152/ajpcell.1994.266.3.C628
  13. Snyder SH, Bredt DS. Biological roles of nitric oxide. Sci Am 1992;266:68-71,
  14. Morgan L. Nitric oxide: a challenge to chiropractic. J Can Chiropr Assoc 2000;44:40-8.
  15. Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 1996;270:E955-60
  16. Turner CH, Takano Y, Owan I, Murrell GA. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 1996;270:E634-9.
  17. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A 1992;89:6348-52. https://doi.org/10.1073/pnas.89.14.6348
  18. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et a!. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992;256: 225-8. https://doi.org/10.1126/science.1373522
  19. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein isnitric oxide. Proc Natl Acad Sci U S A 1987;84:9265-9. https://doi.org/10.1073/pnas.84.24.9265
  20. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524-6. https://doi.org/10.1038/327524a0
  21. Villars F, Bordenave L, Bareille R, Amedee J. Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J cell Biochem 2000;79:672-85. https://doi.org/10.1002/1097-4644(20001215)79:4<672::AID-JCB150>3.0.CO;2-2
  22. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999;56:794-814. https://doi.org/10.1046/j.1523-1755.1999.00610.x
  23. Shum L, Rabie AB, Hagg U. Vascular endothelial growth factor expression and bone formation in posterior glenoid fossa during stepwise mandibular advancement. Am J Orthod Dentofacial Orthop 2004;125:185-90.. https://doi.org/10.1016/j.ajodo.2002.12.002
  24. Rabie AB, Wong L, Hagg U. Correlation of replicating cells and osteogenesis in the glenoid fossa during stepwise advancement. Am J Orthod Dentofacial Orthop 2003;123:521-6. https://doi.org/10.1016/S0889-5406(02)57033-5
  25. Griffith OW, Stuehr DJ, Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995;57:707-36. https://doi.org/10.1146/annurev.ph.57.030195.003423
  26. Reif DW, McCreedy SA. N-nitro-L-arginine and N-monomethyl- L-arginine exhibit a different pattern of inactivation toward the three nitric oxide synthases. Arch Biochem Biophys 1995;320: 170-6. https://doi.org/10.1006/abbi.1995.1356
  27. Pitsillide AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 1995;9:1614-22. https://doi.org/10.1096/fasebj.9.15.8529841
  28. Woodside DG, Metaxa A, Altuna G. The influence of functional appliance therapy on glenoid fossa remodelling. Am J Orthod Dentofacial Orthop 1987;92:181-98. https://doi.org/10.1016/0889-5406(87)90411-2
  29. Vargervik K, Harvold EP. Response to activator treatment in Class II malocclusions. Am J Orthod 1985;88:242-51. https://doi.org/10.1016/S0002-9416(85)90219-2
  30. Graber TM, Vanasdall RL Jr. Orthodontics, current principles and techniques. 3rd ed. St Louis: Mosby; 2000. p.473-520.
  31. Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S, et al. Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 1995;136:5445-53. https://doi.org/10.1210/en.136.12.5445
  32. MarIetta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994;78:927-30. https://doi.org/10.1016/0092-8674(94)90268-2
  33. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001;280:F193-206. https://doi.org/10.1152/ajprenal.2001.280.2.F193
  34. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Aug J, Yun CO, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular pcrmeability. Proc Natl Acad Sci U S A 2001;98: 2604-9. https://doi.org/10.1073/pnas.041359198
  35. Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med 2004;10:143-5. https://doi.org/10.1016/j.molmed.2004.02.001