Bathophenanthroline를 interlayer로 적용한 $C_{60}$ 기반의 n형 유기박막트랜지스터의 성능

Performances of $C_{60}$ based n-type Organic Thin Film Transistor with A Doped Interlayer Using Bathophenanthroline

  • 김정수 (부산대학교 전자전기공학부) ;
  • 손희근 (부산대학교 전자전기공학부) ;
  • 이문석 (부산대학교 전자전기공학부)
  • Kim, Jeong-Su (School of Electrical Engineering, Pusan National University) ;
  • Son, Hee-Geon (School of Electrical Engineering, Pusan National University) ;
  • Yi, Moon-Suk (School of Electrical Engineering, Pusan National University)
  • 투고 : 2010.06.03
  • 심사 : 2010.07.26
  • 발행 : 2010.08.25

초록

본 논문에서는 BPhen(Bathophenanthroline)과 BPhen에 Cs가 도핑 된 interlayer를 $C_{60}$활성층과 Al전극사이에 주입해 $C_{60}$을 기반으로 한 유기박막트랜지스터 (OTFTs)를 제작하여 전기적 특성을 향상시켰다. BPhen층을 증착하면 유기물과 금속층계면의 표면 거칠기가 낮아져 결과적으로 성능이 향상되는 것을 알 수 있었다. 또한 BPhen에 Cs가 도핑 된 interlayer를 co-evaporation을 이용하여 주입하였을 경우는 Contact resistance가 감소하였다. 이러한 $C_{60}$을 기반으로 한 BPhen에 Cs가 도핑 된 interlayer를 삽입한 유기박막트랜지스터는 향후 n형 유기박막트랜지스터를 제작하는데 있어서 적용이 될 것이라고 기대된다.

In this paper, $C_{60}$ based Organic thin film transistor OTFTs) have been fabricated using BPhen(Bathophenanthroline) and BPhen doped with Cs interlayers between $C_{60}$ active layer and Al electrodes to improve the electrical performance. The addition of the BPhen layer resulted in enhanced performances by reducing surface roughness between organic-metal interface. And the contact resistance was reduced by using the BPhen doped with Cs interlayer with co-evaporation method. These performances suggests that the $C_{60}$ based OTFT with BPhen doped with Cs interlayer is a promising application in the fabrication of n-type organic transistors.

키워드

참고문헌

  1. Reese, C. et al., Mater. Today 7 (9), 20-27, 2004. https://doi.org/10.1016/S1369-7021(04)00398-0
  2. Brabec, C.J., Sariciftci,N.S. ,and Hummelen,J.C.,Adv.Funct.Mater.11(1),15-26,2001. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  3. Crone, B. et al., Appl. Phys. Lett. 78 (15), 2229-2231, 2001. https://doi.org/10.1063/1.1360785
  4. Baude, P.F. et al., Appl. Phys. Lett. 82 (22), 3964-3966, 2003. https://doi.org/10.1063/1.1579554
  5. Z. Bao, J. Locklin, Organic field effect transistors, 2007.
  6. S. O. Kasap., principle of Electronic materials and device pp.67
  7. Dinesh Varshney et al., Bull. Mater. Sci., Vol.28, No. 2, April 2005, pp. 155–171. https://doi.org/10.1007/BF02704236
  8. E .Burstein et al., Physica Scripta. Vol. T42, 207-213, 1992. https://doi.org/10.1088/0031-8949/1992/T42/033
  9. Matsumoto, T. 2000. Organic EL review paper. Oplus E, Vol. 22, Nr 11, in Japanese
  10. S.M. Sze, Physics of Semiconductor Devices, Wiley, NewYork, 1981;M .Shur,M .Hack, J.Appl.Phys.55(1984)3831 https://doi.org/10.1063/1.332893
  11. D. J. Gundlach, L. Zhou, J. A. Nichols, and T. N. Jackson, J. Appl. Phys. 100 (2006) 024509 https://doi.org/10.1063/1.2215132
  12. Sirringhaus, H., Adv. Mater. 17 (20), 2411-2425, 2005. https://doi.org/10.1002/adma.200501152
  13. Lee, J. et al., Appl. Phys. Lett. 87 (2), 023504, 2005.
  14. Proc. Int. Symp. Super-Functionality Organic Devices IPAP Conf. Series 6 pp.104-107
  15. Matsumoto, T., et al. 2003. SID'03DIGEST, 27.5L, LateNewsPaper, p979
  16. H. Yang et al., Journal of luminescence 127 (2007) 367-370 https://doi.org/10.1016/j.jlumin.2007.01.014
  17. Chan et al., Appl. Phys. Lett., Vol. 90, 023504 (2007) https://doi.org/10.1063/1.2430783
  18. Naka et al., Appl. Phys. Lett., Vol. 76, No. 2, 10 (2000) https://doi.org/10.1063/1.125639
  19. H. Ding, Y. Gao / Applied Surface Science 252 (2006) 3943–3947
  20. L.S. Hung, C.H. Chen / Materials Science and Engineering R 39 (2002) 143–222