Moisture Sorption Characteristics and a Prediction Model of Anchovy Powder with Particle Size

입자크기에 따른 분말멸치의 흡습특성 및 예측모델

  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu)
  • 윤광섭 (대구가톨릭대학교 외식식품산업학부)
  • Received : 2010631
  • Accepted : 2010.08.06
  • Published : 2010.08.30

Abstract

This study was carried out to estimate the moisture sorption characteristics and prediction model of anchovy powders with different particle size as above 80 mesh, 80-60 mesh and 40-60 mesh. The equilibrium moisture content had higher values at lower storage temperatures, and higher water activity. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than that of BET equation. The estimated monolayer moisture content was 0.024-0.052 g $H_2O/g$ dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. The fitness of the isotherm curve was shown to be in the order of Khun, Halsey, Caurie and Oswin model. The prediction model equations for the moisture content were established by ln(time), water activity, and temperature, respectively. The model equation will be helpful for future work on drying and storage of anchovy powder.

멸치분말의 저장안정성을 알아보고자 80 mesh이상, 80-60 mesh, 60-40 mesh로 입자크기에 따라 분급하여 흡습특성을 조사하고 평형수분함량의 예측 모델식을 수립하였다. 평형수분함량은 수분활성도가 높아짐에 따라 빠르게 증가하는 양상이었으며, 높은 온도에서 낮은 함량을 나타내었다. 단분자층 수분함량은 BET식보다 GAB식이 더 높은 유의성을 보였으며 그 함량은 0.022-0.029 g $H_2O/g$ dry solid 였다. 수분활성도가 증가함에 따라 필요로 하는 흡습에너지가 낮아져 흡습엔탈피는 감소하여 흡습이 쉽게 이루어짐을 알 수 있었다. 등온흡습곡선의 적합도는 Kuhn 모델이 $R^2$ 0.94 이상으로 높은 적합도를 나타내었고, Halsey, Caurie, Oswin 모델순으로 적합도를 나타내었다. 흡습 중 평형상대습도 예측 모델을 수립하기 위해 온도와 수분활성도의 경우 일차함수, 시간의 경우 ln 함수가 높은 적합도를 보였으며, 수분활성도 예측모델식은 입자의 크기에 관계없이 상대습도와 시간으로 수립한 모델식의 적합도가 적절한 것으로 나타났다.

Keywords

References

  1. Kim, J.T., Kang, S.T., Kang, J.G., Choe, D.J., Kim, S.M. and Oh, K.S.(2003) Food components and quality characteristics of boiled-dried anchovies caught by pound net. J. Korean Soc. Food Sci. Nutr., 32, 1186-1192 https://doi.org/10.3746/jkfn.2003.32.8.1186
  2. Yoo, U.H., Kang, S.T., Choe, D.J., Nam, K.H., Roh, T.H. and Oh, K.S. (2007) Processings and quality characteristics of boiled-dried anchovies with green tea extract. J. Agric. Life Sci., 41, 33-40
  3. Kim, I.S., Lee, T.G., Yeum, D.M., Cho, M.L., Kim, H.S., Cho, T.J., Heu, M.S. and Kim, J.S. (2000) Food component characteristics of cold-air dried anchovies. J. Korean Soc. Food Sci. Nutr., 29, 973-980
  4. Lee, K.H., Kim, C.Y., Yoo, B.J. and Jae, Y.G. (1985) Effect of packing on the quality stability and shelf-life of dried anchovy. J. Korean Soc. Food Nutr., 14, 229-234
  5. Jo, K,S. and Kim, Y.M. (1987) Effect of temperature and relative humidity on the storage stability of boiled-dried anchovy. Korean J. Food Sci. Technol., 19, 188-194
  6. Cho, Y.J., Kim, T.J., Shim, K.B. and Choi, Y.J. (2000) Effect of antioxidants and packing methods on the repression of lipid oxidation in plain dried large anchovy. J. Korean Fish. Soc., 33, 238-242
  7. Kim, D.W. (1992) A study on the flow ability and absorption of model food powders. PhD thesis, Chungnam University, Daejeon, Korea
  8. Basunia, M.A., and Abe, T. (2005) Adsorption iostherms of barley at low and high temperature. J. Food Eng., 66, 129-136 https://doi.org/10.1016/j.jfoodeng.2004.03.006
  9. Al-Muhtaseb, A.H,, McMinn, W.A.M. and Magee, T.R.A. (2004) Water sorption isotherms of starch powders. Part I. Mathematical description of experimental data. J. Food Eng., 61, 297-307 https://doi.org/10.1016/S0260-8774(03)00133-X
  10. Jung, S.H., Chang, K.S. and Park, Y.D.. (1993) Prediction of water activity for gelatinized model foods. Korean J. Food Sci. Technol., 25, 94-97
  11. Youn, K.S. (1989) Sorption characteristics and moisture content prediction model of coffee with relative humidity and temperature. MS thesis, Kyungpook National. University, Daegu, Korea
  12. Apostolopoulos. D. and Gilbert, S.G. (1990) Water sorption of coffee solubles by frontal inverse gas chromatography : thermodynamic considerations. J. Food Sci., 55, 475-477 https://doi.org/10.1111/j.1365-2621.1990.tb06790.x
  13. Peng, G., Chen, X., Wu, W. and Jiang, X. (2007) Modeling of water sorption isotherm for corn starch. J. Food Eng., 80, 562-567 https://doi.org/10.1016/j.jfoodeng.2006.04.063
  14. Kim, H.K., Jo, K.S., Hawer, W.D. and Shin, D.H. (1988) Browning and sorption characteristics of garlic powder with relative humidity and storage temperature. Korean J. Food Sci. Technol., 20, 399-404
  15. Lee, M.J. and Lee, J.H. (2007) Moisture sorption isotherm characteristics of Chaga mushroom powder as influenced by particle size. Food Sci. Biotechnol., 16, 154-158
  16. Kumar, P. and Mishra, H.N. (2006) Moisture sorption characteristics of mango-soy fortified yogurt powder. Int. J. Dairy Technol., 59, 22-28 https://doi.org/10.1111/j.1471-0307.2006.00215.x
  17. Kim, J.S., Kim, J.H. and Ha, Y.S. (2005) Absorption characteristics of soybean curd powder by drying methods. Korean J. Food Preserv., 12, 54-61
  18. Sahu, J.K. and Tiwari, A. (2007) Moisture sorption isotherms of osmotically dehydrated sweet pepper. Int. J. Food Eng., 3, 1-16 https://doi.org/10.1111/j.1365-2621.1968.tb01432.x
  19. Bonquet, R., Chrife, J. and Igleasis, H.A. (1978) Equations for fitting water sorption isotherms of foods; II. Evaluation of various two-parameter model. J. Food Technol., 13, 319-322