Preparation and Characterization of Watermelon Wine

수박을 이용한 와인의 제조 및 특성

  • Park, Chan-Sung (Department of Faculty of Herbal Cuisine and Nutrition, Daegu Hanny University) ;
  • Kim, Mi-Lim (Department of Faculty of Herbal Cuisine and Nutrition, Daegu Hanny University)
  • 박찬성 (대구한의대학교 한방식품조리영양학부) ;
  • 김미림 (대구한의대학교 한방식품조리영양학부)
  • Received : 2010.06.16
  • Accepted : 2010.08.06
  • Published : 2010.08.30

Abstract

We developed watermelon (Citrullus vulgaris Schrad) wine to increase the market for the fruit, which is currently sold only in fresh form. The pH of watermelon wine was pH 2.8~3.4, the total acid level 0.48~0.55%, and the soluble solid $5{\sim}6^{\circ}brix$ alcohol content was 9.5~10.5%. Fermentation of watermelon juice was satisfactory at both 20C and 25C. All of citric acid, malic acid, and oxalic acid were detected in watermelon wine citric acid was the most abundant. All of glucose, fructose, sucrose, and maltose were present in juice, and both fructose and glucose were used in fermentation. Electron-donating ability (EDA) was high, being 80% of the control value when watermelon wine was diluted to $400\;{\mu}l/ml$. SOD-like activities were present in both watermelon juice and wine, being 55.2% and 49.2% of control values, respectively. Nitrite-scavenging ability (NSA) was 70.2% and 53.2% of control values in undiluted juice and wine, respectively. Watermelon juice showed higher activation than did wine, but functionality neither fell nor rose after fermentation. In sensory evaluation of wine, the overall score was better than average, at 4.15, thus establishing the commercial potential of watermelon wine.

본 연구는 생과 이외에는 상품성을 기대하기 어려운 수박을 이용하여 수박와인을 개발하고자 하였다. 발효 48일째 수박와인의 pH는 2.8~3.4, 총산 함량은 0.51~0.59%, 당도는 $5{\sim}6^{\circ}brix$까지 감소하였으며, 알콜함량은 9.5~10.5%로 증가하였다. 알콜생성량이 가장 높은 조건은 $20^{\circ}C$$25^{\circ}C$이었으며, 두 온도간에는 유의적인 차이는 없었다. 수박와인은 citric acid, malic acid, oxalic acid가 검출되었으며, 주요 유기산은 citric acid인 것으로 확인되었다. 당은 glucose, fructose, sucrose, maltose 순으로 검출되었으며, 발효에 가장 많이 이용된 당은 fructose와 glucose이었다. 수박와인의 전자공여능은 40%(v/v) 농도에서 86% 이상의 높은 활성을 나타내었다. SOD 유사활성은 100%(v/v) 농도에서 수박과즙, 수박와인 순으로 각각 55.2%, 49.2%이었다. 아질산염 소거능은 100%(v/v) 농도에서 수박과즙과 수박와인은 각각 70.2%, 53.2%의 소거능을 보였다. 수박와인 보다 수박과즙이 더 높은 활성을 나타내었으며, 발효 후에 기능성이 증가하지는 않았지만 비슷한 수준으로 유지됨을 볼 수 있었다. 관능평가에서 전체적인 밸런스는 4.15로 보통 이상으로 평가되어 수박을 이용한 발효주의 산업 가능성을 확인할 수 있었다.

Keywords

References

  1. Report on present state of liquor tax. http://www.blog.naver.com/ntscafe/110081853321
  2. Total visible supply of liquor. http://taxtimes.co.kr
  3. Cheongdo gam wine. http:// www.gamwine.com (2010년 5월 검색)
  4. Korean Traditional Wine MalgEun NamIl. http://www.menib.co.kr (2010년 5월 검색)
  5. Applease Korea Brewery. http:// www.applewine.co.kr (2010년 5월 검색)
  6. Doosan Encyclopedia. http:// www.naver.com (2010년 5월 검색)
  7. Lee, B.H. (1983) Cultivation of vegetable in a green house. Sunjinmunhwasa, Seoul, Korea. p223-239
  8. Lee, W.S. (1994) Vegetable of korea. Kyungbuk National University Pree, Daegu, Korea, p189-202
  9. Hong, S.P., Lim, J.Y., Jeong, E.J. and Shin, D.H. (2008) Physicochemical properties of watermelon according to cultivars. Korean J. Food Preserv., 15, 706-710
  10. Kim, K.S, Lee, H.J. and Kim, S.M. (1999) Volatile flavor components in watermelon (Citrullus vulgaris S.) and oriental melon (Cucumis melo L.). Korean J. Food Sci. Technol., 31, 322-328
  11. Sohn, J.Y., Ban, S.C., Shin, J.S. and Hong, S.H. (1996) Distribution of free sugars in the various protions of watermelon (Citrullus vulgaris L.) and muskmelon (Cucumis melo var. reticulatus Naud). J. Korean Soc. Appl. Bioi. Chem., 39, 200-205
  12. Hwang, Y., Lee, G.G., Jeong, G.T., Go, B.L., Choe, D.C., Choe, J.S. and Eun, J.B. (2004) Manufacturing of watermelon beverage added with natural color extracts Korean J. Food Sci. Technol., 36, 226-232
  13. Suh, J.Y., Kang, H.A. and Chang, K.S. (2001) Concentration of watermelon juice by reverse osmosis. Food Eng. Prog., 5, 160-164
  14. Hwang, Y., Lee, G.G., Jeong, G.T., Go, B.L., Choe, D.C., Choe, Y.G. and Eun, J.B. (2004) Manufacturing of wine with watermelon. Korean J. Food Sci. Technol., 36, 50-57
  15. Kim, S.L., Kim, W.J., Lee, S.Y. and Byun, S.M. (1984) Alcohol fermentation of korean watermelon juice. J. Korean Agric. Chem. Soc., 27, 139-145
  16. A.O.A.C. (2000). Official Methods of Analysis 17th Ed. Association of official Analytical Chemists. Washington DC., USA1
  17. National tax service technical service institute (2000) 12-5 Fruit wine jujeongbun. http://www.i.nts.go.kr
  18. Gancedo, M.C. and Luh, B.S. (1986) HPLC analysis of organic acids and sugar in tomato juice. J. Food Sci., 51, 571-580 https://doi.org/10.1111/j.1365-2621.1986.tb13881.x
  19. Cristina, J.K. and Brandes, W.B. (1974) Determination of sucrose, glucose and fructose by liquid chromatography. J. Agric. Food Chem., 22, 709-715
  20. Blois, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1224 https://doi.org/10.1038/1811199a0
  21. Marklund, S. and Marklund, G. (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  22. Kato, H., Lee, Cheon, N.V., Kim, S.B. and Hayase, F. (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem., 51, 1333 https://doi.org/10.1271/bbb1961.51.1333
  23. Lee, H.B., Yang, C.B. and Yu, T.J. (1972) Studies on the chemical composition of some fruit vegetables and fruits in korea. Korean J. Food Sci. Technol., 4, 36-43