황-요오드 수소 제조 공정의 분젠 반응 부분에서 $O_2$의 역할

The Role of Oxygen in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process

  • 홍동우 (충남대학교 공과대학 정밀응용화학과) ;
  • 김효섭 (충남대학교 공과대학 정밀응용화학과) ;
  • 김영호 (충남대학교 공과대학 정밀응용화학과) ;
  • 박주식 (한국에너지기술연구원) ;
  • 배기광 (한국에너지기술연구원)
  • Hong, Dong-Woo (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Group, Korea Institute of Energy Research)
  • 투고 : 2010.07.27
  • 심사 : 2010.08.20
  • 발행 : 2010.08.31

초록

The Sulfur-Iodine (SI) thermochemical hydrogen production process of a closed cycle consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. To identify the role of oxygen that can be supplied to the Bunsen reaction section via the $H_2SO_4$ decomposition section, Bunsen reactions with a $SO_2,\;SO_2-O_2$ mixture and $SO_2-N_2$ mixture as feed gases were carried out using a stirred reactor in the presence of $I_2/H_2O$ mixture. As the results, the amounts of $I_2$ unreacted under the feed of mixture gases were higher than those under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The results of Bunsen reaction using $SO_2-O_2$ mixture were similar to those using $SO_2-N_2$ mixture. It may be concluded that an oxygen in $SO_2-O_2$ mixture has a role as a carrier gas like a nitrogen in $SO_2-N_2$ mixture. The effects of oxygen were decreased with increasing temperature and decreasing oxygen content in $SO_2-O_2$ mixture.

키워드

참고문헌

  1. J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, No. 3, 2001, p. 185. https://doi.org/10.1016/S0360-3199(00)00062-8
  2. J. E. Funk, and R. M. Reinstrom, "Energy requirements in the production of hydrogen from water", Ind. Eng. Chem. Proc. Des. Develop., Vol. 5, No. 3, 1966, p. 336. https://doi.org/10.1021/i260019a025
  3. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki, "A demonstration study on a closed cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 347. https://doi.org/10.1016/j.nucengdes.2004.08.025
  4. S. Kubo, S. Kasahara, H. Okuda, and A. Terada, "A pilot test plan of the thermochemical watersplitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 355. https://doi.org/10.1016/j.nucengdes.2004.08.018
  5. S. Goldstein, J. M. Borgard, and X. Vitart, "Upper bound and best estimate of the efficiency of the iodine sulfur cycle", Int. J. Hydrogen Energy, Vol. 30, No. 6, 2005, p. 619. https://doi.org/10.1016/j.ijhydene.2004.06.005
  6. S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, "Effects of the process parameters of the IS process on total thermal efficiency to produce hydrogen from water", J. Chem. Eng. Jpn., Vol. 36, No. 7, 2003, p. 887. https://doi.org/10.1252/jcej.36.887
  7. S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, "Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process", Int. J. Hydrogen Energy, Vol. 29, No. 6, 2004, p. 579. https://doi.org/10.1016/j.ijhydene.2003.08.005
  8. J. H. Norman, G. E. Besenbruch, and D. R. O'keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105, Gas Research Institute, 1981.
  9. 이광진, 안승혁, 김영호, 박주식, 배기광, "황-요오드 열화학 수소 제조 공정에서 분젠 반응과 상 분리 비교", 한국수소 및 신에너지학회 논문집, Vol. 19, No. 2, 2008, pp. 111-117.
  10. 이광진, 김영호, 박주식, 배기광, "SI 열화학수소 제조 공정에서 분젠 반응을 통한 상 분리 특성", 한국수소 및 신에너지학회 논문집, Vol. 19, No. 5, 2008, pp. 386-393.
  11. 이광진, 홍동우, 김영호, 박주식, 배기광, "황-요오드 수소 생산공정의 분젠 반응 부분에서 부반응 제어", 한국수소 및 신에너지학회 논문집, Vol. 19, No. 6, 2008, pp. 490-497.