DOI QR코드

DOI QR Code

An Analysis of Wind Energy Resources using Synoptic Observational Data in North Korea

종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석

  • Yun, Jun-Hee (Department of Earth Science Education, Kongju National University) ;
  • Seo, Eun-Kyoung (Department of Earth Science Education, Kongju National University) ;
  • Park, Young-San (National Institute of Meteorological Research) ;
  • Kim, Hak-Seong (Department of Earth Science Education, Korea National University of Education)
  • 윤준희 (공주대학교 사범대학 지구과학교육과) ;
  • 서은경 (공주대학교 사범대학 지구과학교육과) ;
  • 박영산 (국립기상연구소) ;
  • 김학성 (한국교원대학교 지구과학교육과)
  • Received : 2010.03.15
  • Accepted : 2010.05.24
  • Published : 2010.06.30

Abstract

Wind power density distribution over the North Korea territory was investigated by using 30-year wind observations at 27 meteorological stations. The mean annual wind power density over North Korea turned out to be 58.6W/$m^2$, which corresponds to the wind power class of 1. The wind power density shows a seasonal variation, having the highest density in spring and the lowest in summer. In particular, the wind power density in summer is about a half of that in spring. The diurnal variation of the wind power density shows that the highest and lowest densities occur in the afternoon and between 3 and 6 am in local time, respectively. The most potential wind energy generation regions are the Gaema Plateau in the central region, the northeast part of Hamgyeongbuk-do, the south coast of Pyongan-do and the west coast of Hwanghae-do. The mean annual wind power density in Changjin is 151.2W/$m^2$, which is equivalent to the class of 3. In Ryongyon, the annual mean wind power density is 102.4W/$m^2$, which belongs to the class of 2.

북한 지역의 27개 기상관측지점의 30년 바람 자료를 이용하여 고도 50 m에서의 풍력밀도를 분석하였다. 27개 지점의 연평균 풍력밀도는 58.6W/$m^2$로 1등급에 해당하는 풍력 자원이었다. 계절에 따른 평균 풍력밀도는 겨울보다 봄에 더 높았으며, 여름에는 봄의 50% 정도의 풍력밀도를 나타냈다. 풍력밀도의 일변화를 보면 거의 모든 관측 지점에서 오후에 비교적 높은 풍력밀도와 오전 3-6시 경에 낮은 풍력밀도를 보였으며, 일변화의 진폭은 봄에 가장 컸다. 특히 내륙 중심부인 개마고원 지역과 함경북도 동북부, 평안도 남부 해안, 황해도 해안 근처에서 비교적 높은 값을 나타냈다. 장진에서의 연평균 풍력밀도는 3등급인 151.2 W/$m^2$를 나타냈으며, 용연은 2등급인 102.4 W/$m^2$의 값을 보였다.

Keywords

References

  1. 경남호, 윤정은, 장문석, 장동순, 2003, 한반도 해역의 해상풍력자원 평가. 한국태양에너지학회 논문집, 23, 35-41.
  2. 고경남, 허종철, 2007, 풍력공학입문. 문운당, 서울, 252 p.
  3. 기상청, 2007, 풍력자원지도 개발 연구 보고서. 기상청자료관리서비스팀, 11-1360000-000355-14, 102 p.
  4. 김건훈, 경남호, 김은일, 장문석, 배재성, 김석우, 김성완,김홍우, 주영철, 하종호, 윤정은, 2005, 풍력자원 정밀조 사 및 풍력단지 개발 기술 증진 연구. 한국에너지기술 연구원 보고서, KIER-A44322, 504 p.
  5. 김도우, 변희룡, 2008, 한반도 바람자원의 시공간적 분포.대기지, 18, 171-182.
  6. 김현구, 최재우, 2002, 풍력에너지 이용 및 개발 현황.RIST 연구논문, 16, 479-485.
  7. 김현구, 이화운, 정우식, 2005, 한반도 바람지도 구축에 관한 연구 I. 원격탐사자료를 이용한 해상풍력자원 평가.한국대기환경학회지, 21, 63-72.
  8. 김현구, 장문석, 이화운, 김동혁, 최현정, 2006, 수치바람모의에 의한 저해상도 국가 바람지도의 구축. 한국태양에너지학회 논문집, 26, 31-38.
  9. 박경호, 김건훈, 조덕기, 전홍석, 1994, 국내의 풍력자원 분포특성분석. 한국에너지공학회지, 3, 187-192.
  10. 서은경, 윤준희, 박영산, 2009, 북한 지역에서의 30년 동안의 평균 바람 지도. 한국지구과학회지, 30, 845-854.
  11. 손충렬, 2006, 북한과학기술연구. 한국과학기술정보연구원북한과학기술네트워크, 4, 109-124.
  12. 윤재옥, 김명래, 2008, 대학교 캠퍼스의 풍력자원 측정 및 분석. 한국생태환경 건축학회 논문집, 8, 19-24.
  13. 이민식, 2008, 세계 풍력발전산업의 동향 및 전망. 산업은행조사월보, 626, 97-107.
  14. 이유진, 이강준, 윤지훈, 장주영, 2007, 남북에너지 협력방안 연구-재생가능에너지를 중심으로. 2007년도 국회 연구용역 과제 보고서, 120 p.
  15. 이은정, 조일성, 허철운, 김태룡, 이동일, 김영신, 2008, 기상정보를 활용한 풍력자원지도 개발 연구. 한국기상학회 봄 학술대회 논문집, 332-333.
  16. 장문석, 2008, 신재생에너지 백서. 지식경제부, 3, 294-316.
  17. 장용훈, 2005, 北, 교토의정서 가입 배경과 전망. http://news.naver.com (검색일: 2009. 6. 10)
  18. 조동호, 고일동, 김상기, 김상훈, 김은영, 이은경, 2007, KDI 북한경제리뷰. 한국개발연구원, 85 p.
  19. Celik, A.N., 2003, A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy, 29, 593-604.
  20. Elliot, D.L., Holladay, C.G., Barchet, W.R., Foote, H.P., and Sandusky, W.F., 1986, Wind energy resource Atlas of the United States. Solar Energy Research Institute (now the National Renewable Energy laboratory). Golden, Colorado. Available online, http://rredc.nrel.gov/ wind/pubs/atlas.
  21. Jewer, P., Iqbal, M.T., and Khan, M.J., 2005, Wind energy resource map of labrador. Renewable Energy, 30, 989-1004. https://doi.org/10.1016/j.renene.2004.09.006
  22. Khan, M.J. and Iqbal, M.T., 2004, Wind energy resource map of Newfoundland. Renewable Energy, 29, 1211-1221. https://doi.org/10.1016/j.renene.2003.12.015
  23. Nyouky, P., 2009, A feasibility study on wind energy resource for utility-scale application: A case analysis from Greater Banjul Area, The Gambia. A Master’s Thesis, National Central University in Taiwan, 88 p.
  24. Panofsky, H., 1973, Tower micrometeorology. Workshop on Micrometeorology, American Meteorological Society,151-176.
  25. Panofsky, H.A. and Dutton, J.A., 1984, Atmospheric turbulence.John Wiley and Sons, NY, USA, 397 p.
  26. Stevens, M.J. and Smulders, P.T., 1979, The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes, Wind Engineering, 3, 132-145.
  27. Weisser, D. and Foxon, T.J., 2003, Implications of seasonal and diurnal variations of wind velocity for power output estimation of a turbine: A case study of Grenada, International Journal of Energy Research, 27,1165-1179. https://doi.org/10.1002/er.938
  28. Zhang, S.F., 1981, A statistical analysis of the power law and the logarithmic law using wind data from a 164 m tower. Boundary-Layer Meteorology, 20, 117-123. https://doi.org/10.1007/BF00119928