A Simplified Method for Predicting Failure Probability of Pipelines with Corrosion Defects

부식결함을 가진 배관의 파손확률 예측을 위한 단순화된 방법

  • Lee, Jin-Han (Graduate School of Energy & Environment, Seoul National Univ. of Technology) ;
  • Kim, Young-Seob (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Lae-Hyun (Graduate School of Energy & Environment, Seoul National Univ. of Technology)
  • 이진한 (서울산업대학교 에너지환경대학원) ;
  • 김영섭 (한국가스안전공사 가스안전연구원) ;
  • 김래현 (서울산업대학교 에너지환경대학원)
  • Received : 2009.12.21
  • Accepted : 2010.08.24
  • Published : 2010.08.31

Abstract

An alternative method is presented for predicting failure probability of pipelines with corrosion defects in this paper. The failure of corroded pipeline occurs when the operating pressure is grater than the remaining strength of the pipeline, and a limit state function can be defined as the differences between the remaining strength and the operating pressure. Then, based on structural reliability theory, we can estimate the failure probability of corroded pipeline, which is dependent on elapsed time of the pipeline with active corrosion defects. In this study, a root finding (RF) method has been adopted to solve the limit state function instead of Monte-Carlo simulation (MCS) method which traditionally has been employed to solve those kinds of problems. The calculation results shows that there are only small differences between the RF and the MCS method but the RF has higher efficiency in calculation than the MCS.

본 논문은 부식 배관의 파손 가능성에 대해 확률론적 분석방법을 설명하고, 이를 단순화하여 계산할 수 있는 방법을 제안하였다. 부식 배관의 파손은 운전압력이 부식 배관의 잔존강도를 초과할 때 발생하는데 이를 한계상태 함수로 설정하여 분석하면 부식이 진행됨에 따른 누출확률에 대한 불확실성을 예측할 수 있다. 이 한계상태 함수는 해석해가 존재하지 않으므로 전통적으로 불확실성을 예측하기 위해 Monete-Carlo Simulation (MCS)을 사용한다. 본 연구에서는 한계상태 함수의 해가 하나만 존재한다는 점에 착안하여 그 해를 수치적으로 찾는 방법을 제안하였다. 이 방법은 MCS를 이용한 결과와 비교할 때 오차가 적으면서도 매우 빠르게 계산할 수 있어 효율적인 방법이라 판단된다.

Keywords

References

  1. DNV, Corroded pipelines, Recommended Practice DNV-RP-F101 (2004)
  2. Melchers, R.E., Structural Reliability Analysis and Prediction, 2nd edition, John Wiley and Sons, NY. (1999)
  3. Kiefner, J.F., Maxey, W.A., Eiber, R.J. and Duffy, A.R., "Failure stress Levels of Flows in Pressurized Cylinders. Progress in Flaw Grawth and Fracture Toughness Testing. ASTM STP 536", American Socity for Testing and Materials, pp 461-481 (1973)
  4. Pandey, M.D., "Probabilistic models for condition assessment of oil and gas pipelines", NDT&E International, Vol. 31, No. 5, pp. 349-358, (1998) https://doi.org/10.1016/S0963-8695(98)00003-6
  5. Ahammed M., Melchers R.E., "Reliability Estimation of Pressurized Pipelines subject to localized corrosion defects", Int. J. Pessure vessels and Piping, 69:267-72, (1998)
  6. Caleyo F, Gonzalez J.L., Hallen J.M., "A study on the reliability assessment methodology for pipelines with active corrosion", Int. J. Pessure vessels and Piping, 79:77-86, (2002) https://doi.org/10.1016/S0308-0161(01)00124-7
  7. Shu-Xin Li, Shu-Rong Yu, Hai-Long Zeng, Jian-Hua Li, Rui Liang, "Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model", Journal of Petroleum Science and Engineering, 65 162-166 (2009) https://doi.org/10.1016/j.petrol.2008.12.023
  8. Moglia, M., Davis, P., Burn S., "Strong exploration of a cast iron pipe failure model", Reliability Engineering & System Safety, vol. 93. issue 6, pp. 885-896, (2008) https://doi.org/10.1016/j.ress.2007.03.033
  9. Teixeira, A.P., Guedes Soares, C., Netto, T.A., Estefen, S.F., "Reliability of pipelines with corrosion defects", International Journal of Pressure Vessels and Piping 85: 228-237 (2008) https://doi.org/10.1016/j.ijpvp.2007.09.002
  10. Worthingham, R.G, Fenyvesi, L.L., Morrison T.B, Desjardins, G.J, "Analysis of Crrosion Rates on a Gas Transmission Pipeline", Pipeline and Gas Technology Magazine, Nov/Dec 2002 issue-pg45 (2002)