References
- 고영미 . 이상욱, 구장산술의 방정식론의 교육학적 의미, 한국수학사학회지 23 (2010) No. 1, 25–40.
- 박창균, Cantor의 무한관, 한국수학사학회지 10 (1997) No. 2, 33–38.
-
R. Apery, Irrationalite de
$\zeta(2)$ et$\zeta(3)$ , Asterisque 61 (1979), 11–13. - A. Baker, Linear forms in the logarithms of algebraic numbers; (I), Mathematica, 13 (1966), 204–216.
- A. Baker, Effective methods in the theory of numbers, Actes du Congres International des Mathematiciens, Nice, 1970.
- A. Baker, Transcendental Number Theory, Cambridge University Press, 1975.
- K. Boehle,"Uber die Transzendenz von Potenzen mit algebraischen Exponenten." (Verallgemeinerung eines Satzes von A. Gelfond), Math. Ann., 108 (1933), 56-74. https://doi.org/10.1007/BF01452822
- Carl B. Boyer, "The Arabic Hegemony". A History of Mathematics (Second ed.). John Wiley & Sons, Inc. 1991.
- E. Burger, "Diophantine Inequalities and Irrationality Measures For Certain Transcendental Numbers," Indian J. Pure Appl. Math., 32, 2001.
- G. Cantor, "Uber eine Eigenschaft des Inbegriffers aller reellen algebraischen Zahlen," J. Reine Angew. Math. 77 (1874), 258–262.
- G. Cantor, "Ein Beitrag zur Mannigfaltigkeitslehre," J. Reine Angew. Math. 84 (1878), 242–258.
- P. Erdos, "Representations of real numbers as sums and products of Liouville numbers," Michigan Math. J. Vol. 9 (1962), 59–60. https://doi.org/10.1307/mmj/1028998621
- P. Erdos, "Some Remarks and Problems in Number Theory Related to the Work of Euler," Mathematics Magazine 56 (1983), 292–298. https://doi.org/10.2307/2690369
- C. Hermite, "Sur la fonction exponentielle," C. R. Acad. Sci. Paris 77 (1873), 18–24.
-
D. Hilbert, "Uber die Transcendenz der Zahlen e und
$\pi$ ," Mathematische Annalen 43 (1893), 216–219. - A. Gelfond, "Sur le septieme Probleme de D. Hilbert," Comptes Rendus Acad. Sci. URSS Moscou 2 (1934), 1–64.
- A. Gelfond, "Sur le septieme Probleme de Hilbert," Bull. Acad. Sci. URSS Leningrade 7 (1934), 623–634.
-
P. Gordan, "Transcendenz von e und
$\pi$ ," Math. Ann. 43 (1893), 222-224. https://doi.org/10.1007/BF01443647 - M. Kac & S. M. Ulam, Mathematics and Logic, Frederick A. Praeger, New York, 1968.
- J. Lambert, "Memoire sur quelques proprietes remarquables des quantites transcendentes circu-laires et logarithmiques," Histoire de l'Academie, (Berlin) XVII (1761), 265–322.
-
F. Lindemann, "Uber die Zahl
$\pi$ ," Mathematische Annalen 20 (1882), 213–225. - F. Lindemann, "Uber die Ludolph'sche Zahl," Sitzungber. Konigl. Preuss. Akad. Wissensch. zu Berlin No. 2 (1882), 679–682.
- Y. Nesterenko, "Modular Functions and Transcendence Questions," Mat. Sbornik 187 (1996), 65–96.
- P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, 2000.
- T. Rivoal, La fonction zeta de Riemann prend une infnite de valuers irrationnelles aux entiers impairs, Comptes Rendus Acad. Sci. Paris Ser. I Math. 331 (2000), 267–270.
- M. Robinson, On certain transcendental numbers, Michigan Math. J. Vol. 31, Issue 1 (1984), 95–98.
- K. Roth, Rational Approximations to Algebraic Numbers, Mathematika 2 (1955), 1–20.
- T. Schneider, Transzendenzuntersuchungen periodischer Funktionen. I, J. reine angew. Math. 172 (1934), 65–69.
- T. Schneider, Transzendenzuntersuchungen periodischer Funktionen. II, J. reine angew. Math. 172 (1934), 70–74.
- Dan Sewell Ward, The Library of Halexandria, 2008. http://www.halexandria.org/ dward089.htm
- A. Thue, Uber Annaherungswerte algebraischer Zahlen, Journal fur die reine und angewandte Mathematik 135 (1909), 284–305.
- P. Wantzel, Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regle et le compas, Journal de Mathematiques Pures et Appliquees 1 (1837), 366–372.
- K. Weierstrass, Zu Hrn. Lindemann's Abhandlung: 'Uber die Ludolph'sche Zahl', Sitzungber. Konigl. Preuss. Akad. Wissensch. zu Berlin No. 2 (1885), 1067–1086.
- Reader' s Digest Oxford Complete Wordfinder, Oxford University Press, Inc, Reader' s Digest, Pleasantville, New York, 1996.