Neurochemical Profile Quantification of Regional Adult Mice Brain Using: ex vivo $^1H$ High-Resolution Magic Angle Spinning NMR Spectroscopy

생체 외 조직 고 분해능 Magic Angle Spinning을 이용한 정상 Adult Mice에서의 뇌 부위별 뇌 신경화학 대사물질 정량분석

  • Lee, Do-Wan (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Woo, Dong-Cheol (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Lee, Sung-Ho (Department of Veterinary Surgery, Konkuk University) ;
  • Kim, Sang-Young (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Kim, Goo-Young (Department of Molecular Biology, College of Medicine, The Catholic University of Korea) ;
  • Rhim, Hyang-Shuk (Department of Molecular Biology, College of Medicine, The Catholic University of Korea) ;
  • Choi, Chi-Bong (Department of Radiology, Kyung-Hee University) ;
  • Kim, Hwi-Yool (Department of Veterinary Surgery, Konkuk University) ;
  • Lee, Chang-Wook (Department of Psychiatry, College of Medicine, The Catholic University of Korea) ;
  • Choe, Bo-Young (Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea)
  • 이도완 (가톨릭대학교 의과대학 의공학교실) ;
  • 우동철 (가톨릭대학교 의과대학 의공학교실) ;
  • 이성호 (건국대학교 수의과대학) ;
  • 김상영 (가톨릭대학교 의과대학 의공학교실) ;
  • 김구영 (가톨릭대학교 의과대학 분자유전학교실) ;
  • 임향숙 (가톨릭대학교 의과대학 분자유전학교실) ;
  • 최치봉 (경희의료원 진단방사선과) ;
  • 김휘율 (건국대학교 수의과대학) ;
  • 이창욱 (가톨릭대학교 의과대학 정신과학교실) ;
  • 최보영 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2009.12.14
  • Accepted : 2010.02.24
  • Published : 2010.03.31

Abstract

The purpose of this study is to quantitate regional neurochemical profile of regional normal adult mice brain and assess regional metabolic differences by using ex vivo $^1H$ high-resolution magic angle spinning nuclear magnetic resonance spectroscopy ($^1H$ HR-MAS NMRS). The animals were matched in sex and age. The collected brain tissue included frontal cortex, temporal cortex, thalamus, and hippocampus. Quantitative 1D spectra were acquired on 40 samples with the CPMG pulse sequence (8 kHz spectral window, TR/TE = 5500/2.2 ms, NEX = 128, scan time: 17 min 20 sec). The mass of brain tissue and $D_2O$+TSP solvent were 8~14 mg and 7~13 mg. A total of 16 metabolites were quantified as follow: Acet, NAA, NAAG, tCr, Cr, tCho, Cho, GPC + PC, mIns, Lac, GABA, Glu, Gln, Tau and Ala. As a results, Acet, Cho, NAA, NAAG and mIns were showed significantly different aspects on frontal cortex, hippocampus, temporal cortex and thalamus respectively. The present study demonstrated that absolute metabolite concentrations were significantly different among four brain regions of adult mice. Our finding might be helpful to investigate brain metabolism of neuro-disease in animal model.

본 연구는 생체 외 $^1H$ 고분해능 매직앵글스핀닝($^1H$ High-Resolution Magic Angle Spinning; $^1H$ HR MAS) 기술을 이용하여 정상군 adult mice의 뇌에서의 부위별 뇌 신경화학 대사물질(brain neurochemical metabolites)을 정량적으로 분석하고, 이를 이용하여 정상군의 뇌 대사물질의 표준 data base를 정립하기 위함이다. 실험에 사용된 adult mice는 C57BL/6J 모델의 체중 25~28 g, 40주령 수컷 10마리를 사용하였으며, 연령과 성별을 일치시켰다. 또한 뇌의 전두엽(frontal cortex), 측두엽(temporal cortex), 해마(hippocampus), 시상(thalamus) 총 4개의 부위를 채취하여 생체 외 $^1H$ 고분해능 매직앵글 스핀닝 실험을 진행 하였다. 생체 조직의 뇌 대사물질의 절대농도를 획득하기 위하여 대표적인 대사물질(Ace, NAA, NAAG, tCr, Cr, tCho, Cho, mIns, GPC+PC, Lac, GABA, Glu, Gln, tau, Ala)을 각 피크의 면적과 대사물질의 프로톤 개수를 계산하였다. 결과적으로 정상 군에서의 mice 뇌의 신경화학 대사물질들을 Acet, NAA, NAAG, Cho, mIns가 부위별로 절대농도차의 유의성을 나타내었으며, 이 외의 대사물질에서는 유의성이 없는 것으로 나타났다. 본 연구 결과를 토대로 $^1H$ HR-MAS을 이용한 생체조직 실험은 뇌조직 내 대사물질의 절대농도를 측정하고 기본적인 지표를 확보하는데 매우 정확하고 정량적인 방법이 될 수 있을 것으로 사료되며, 더 나아가 mice를 이용한 인간질병 모델의 실험동물에서의 뇌 신경화학 대사물질의 표준 자료화 하는데 도움이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Cheng LL, Anthony DC, Comite AR, et al: Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro Oncology 2:87-95 (2000)
  2. Beatriz MG, Daniel MM, Carmen MB, et al: Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning $^1H$ NMR spectroscopy. NMR Biomed 19:90-100 (2006) https://doi.org/10.1002/nbm.1005
  3. Cheng LL, Ma MJ, Becerra L, et al: Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences, USA 94:6408-6413 (1997)
  4. Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, et al: $^1H$ and $^{13}$ HR-MAS spectroscopy of intact biopsy samples ex-vivo and in-vivo $^1H$ MRS study of human high grade gliomas. NMR Biomed 17:191-205 (2004) https://doi.org/10.1002/nbm.888
  5. Opstad KS, Bell BA, Griffiths JR, Howe FA: An assessment of the effects of sample ischaemia and spinning time on the metabolic profile of brain tumour biopsy specimens as determined by high-resolution magic angle spinning $^1H$ NMR. NMR Biomed 21:1138-1147 (2008) https://doi.org/10.1002/nbm.1296
  6. Mlynarik V, Cudalbu C, Xin L: $^1H$ NMR spectroscopy of rat brain in vivo at 14.1 Tesla Improvements in quantification of the neurochemical profile. Journal of Magnetic Resonance 194:163-168 (2008) https://doi.org/10.1016/j.jmr.2008.06.019
  7. Sackeim HA: The anticonvulsant hypothesis of the mechanisms of action of ECT. The Journal of ECT 15:5-26 (1999)
  8. Nobler MS, Oquendo MA, Kegeles LS, et al: Decreased regional brain metabolism after ECT. The American Journal of Psychiatry 158:305-308 (2001) https://doi.org/10.1176/appi.ajp.158.2.305
  9. Tkac I, Dubinsky JM, Keene CD, et al: Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo $^1H$ NMR spectroscopy. Journal of Neurochemistry 100:1397-1406 (2007) https://doi.org/10.1111/j.1471-4159.2006.04323.x
  10. Bonavita S, Salle F, Tedeschi G. Proton MRS in neurological disorders. European Journal of Radiology 30:125-131 (1999) https://doi.org/10.1016/S0720-048X(99)00051-0
  11. Michaelis T, Boretius S, Frahm J: Localized proton MRS of animal brain in vivo: Models of human disorders. Progress in Nuclear Magnetic Resonance Spectroscopy 55:1-34 (2009) https://doi.org/10.1016/j.pnmrs.2008.11.001
  12. Kantarci K, Jack CR, Xu YC, et al: Regional metabolic patterns in mild cognitive impairment and Alzheimer' disease: A $^1H$ MRS study. Neurology 55:210-217 (2000) https://doi.org/10.1212/WNL.55.2.210
  13. Wang GJ, Volkow ND, Franceschi D, et al: Regional brain metabolism during alcohol intoxication. alcoholism. Clinical and Experimental Research 6:822-829 (2000)
  14. Bates GP, Mangiarini L, Mahal A, et al: Transgenic models of Huntington's disease. Human Molecular Genetics 6:1633-1637 (1997) https://doi.org/10.1093/hmg/6.10.1633
  15. Price DL, Sisodia SS, Borchelt DR: Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079-1083 (1998) https://doi.org/10.1126/science.282.5391.1079
  16. Jankowsky JL, Savonenko A, Schilling G, et al: Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Current Neurology and Neuroscience Reports 2:457-464 (2002) https://doi.org/10.1007/s11910-002-0073-7
  17. Aguzzi A, Klein MA, Montrasio F: Prions: pathogenesis and reverse genetics. The New York Academy of Sciences 920:140-157 (2000)
  18. Marjanska M, Curran GL, Thomas MW, et al: Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences 102:11906-11910 (2005) https://doi.org/10.1073/pnas.0505513102
  19. Torres G, Hallas BH, Gross KW, et al: Magnetic resonance imaging and spectroscopy in a mouse model of schizophrenia. Brain Research Bulletin 75:556-561 (2008) https://doi.org/10.1016/j.brainresbull.2007.09.006
  20. Hong ST, Choi CB, Park CS, et al: Variation of the choline signal intensity in the dorsolateral prefrontal cortex of rats exposed to the forced swimming test as detected by in vivo 1H MR spectroscopy. Journal of Neuroscience Methods 165:89-94 (2007) https://doi.org/10.1016/j.jneumeth.2007.05.022
  21. Firbank MJ, Harrison RM, O'Brien JT: A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and parkinson's disease. Dementia and Geriatric Cognitive Disorders 14:64-76 (2002) https://doi.org/10.1159/000064927
  22. Salo R, Nordahl TE, Natsuaki Y, et al: Attentional control and brain metabolite levels in methamphetamine abusers. Biological Psychiatry 61:1272-1280 (2007) https://doi.org/10.1016/j.biopsych.2006.07.031
  23. Dobrzyn A, Dobrzyn P, Miyazaki M, et al: Stearoyl-CoA desaturase 1 deficiency increases CTP: choline cytidylyltransferase translocation into the membrane and enhances phosphatidylcholine synthesis in liver. The Journal of Biological Chemistry 280:23356-23362 (2005) https://doi.org/10.1074/jbc.M502436200
  24. Oberg J, Spenger C, Wang FH, et al: Age related changes in brain metabolites observed by $^1H$ MRS in APP/PS1 mice. Neurobiology of Aging 29:1423-1433 (2008) https://doi.org/10.1016/j.neurobiolaging.2007.03.002
  25. Deelchand DK, Shestov AA, Koski DM, et al: Acetate transport and utilization in the rat brain. Journal Neurochemistry 109:46-54 (2009) https://doi.org/10.1111/j.1471-4159.2009.05895.x
  26. Nicklas WJ, Clarke DD: Decarboxylation studies of glutamate, glutamine, and aspartate from brain labelled with [1-14C]acetate, L-[U-14C]-aspartate, and L-[U-14C]glutamate. Journal Neurochemistry 16:549-558 (1969) https://doi.org/10.1111/j.1471-4159.1969.tb06854.x
  27. Badar-Goffer RS, Bachelard HS, Morris PG: Cerebral metabolism of acetate and glucose studied by 13C-NMR spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochemical Journal 266:133-139 (1990)
  28. Robin A: de Graaf: In vivo NMR Spectroscopy - Principles and Techniques. 2nd ed. John Wiley & Sons, Chichester, West Sussex county (2007), pp. 43-78