Open-Loop Polar Transmitter에 적용 가능한 테일러 급수 근사식과 CORDIC 기법 성능 비교 및 평가

Performance Comparison of Taylor Series Approximation and CORDIC Algorithm for an Open-Loop Polar Transmitter

  • 김선호 (숭실대학교 정보통신전자공학부) ;
  • 임성빈 (숭실대학교 정보통신전자공학부)
  • Kim, Sun-Ho (School of Electronic Engineering, Soongsil University) ;
  • Im, Sung-Bin (School of Electronic Engineering, Soongsil University)
  • 투고 : 2010.06.17
  • 발행 : 2010.09.25

초록

DPM (Digital Phase wrapping Modulation) open-loop polar transmitter는 in-phase와 quadrature 신호를 진폭(envelope) 신호와 위상(phase) 신호로 변환한 후 신호의 사상화 과정을 거쳐 광대역 통신 시스템에서의 효율적인 적용이 가능하다. 사상화 과정은 일반적인 통신 시스템에서의 양자화와 유사하며 그 과정에서 발생하는 오차를 고려할 때 좌표계 변환부에 CORDIC (COordinates Rotation DIgital Computer) 알고리듬 대신 테일러 급수 근사 기법의 사용이 가능하다. 본 논문에서는 테일러 급수 근사 기법을 광대역 OFDM (Orthogonal Frequency Division Multiplexing) 시스템용 DPM polar transmitter의 직교 좌표계-극 좌표계(cartesian to polar coordinate) 변환부에 적용하는 방안에 대한 연구를 수행하였다. 기존의 방법은 CORDIC 알고리듬을 채용하고 있다. 이것을 효율적으로 적용하기 위해 모의 실험을 통해 각각의 기법에 대한 평균제곱오차 (MSE : Mean Square Error) 성능을 측정하고, 설계 관점에서 허용된 CORDIC 오차를 기준으로 알고리듬의 최소 반복횟수와 테일러 급수의 최소 근사 차수를 찾는다. 또한 FPGA 전달 지연속도를 비교한 결과에 의하면 CORDIC 알고리듬 대신 낮은 차수의 테일러 급수 근사 기법을 사용해 좌표 변환부의 처리 속도를 향상시킬 수 있음을 확인하였다.

A digital phase wrapping modulation (DPM) open-loop polar transmitter can be efficiently applied to a wideband orthogonal frequency division multiplexing (OFDM) communication system by converting in-phase and quadrature signals to envelope and phase signals and then employing the signal mapping process. This mapping process is very similar to quantization in a general communication system, and when taking into account the error that appears during mapping process, one can replace the coordinates rotation digital computer (CORDIC) algorithm in the coordinate conversion part with the Taylor series approximation method. In this paper, we investigate the application of the Taylor series approximation to the cartesian to polar coordinate conversion part of a DPM polar transmitter for wideband OFDM systems. The conventional approach relies on the CORDIC algorithm. To achieve efficient application, we perform computer simulation to measure mean square error (MSE) of the both approaches and find the minimum approximation order for the Taylor series approximation compatible to allowable error of the CORDIC algorithm in terms of hardware design. Furthermore, comparing the processing speeds of the both approaches in the implementation with FPGA reveals that the Taylor series approximation with lower order improves the processing speed in the coordinate conversion part.

키워드

참고문헌

  1. J. Groe, "Polar Transmitters for Wireless Communications," IEEE Communications Magazine, Vol. 45, no. 9, pp. 58-63, Sep. 2007.
  2. J. E. Volder, "The CORDIC Trigonometric Computing Technique, " IRE Trans. Electronic Computers, Vol. EC-8, no. 3, pp. 330-334, Sep. 1959. https://doi.org/10.1109/TEC.1959.5222693
  3. J. S. Walther, "A Unified Algorithm for Elementary Functions," in Proc. Spring. Joint Computer Conference, Vol. 38, pp. 379-385, 1971.
  4. R. Andraka, "A Survey of CORDIC Algorithms for FPGAs," in Proc. of the 1998 ACM/SIGDA Sixth International Symposium on FPGA, pp. 191-200, Monterey, CA, Feb. 1998.
  5. J. Valls, M. Kuhlmann and K. K. Parhi, "Evaluation of CORDIC Algorithms for FPGA Design," Journal of VLSI signal processing, Vol. 32, no. 3, pp. 207-222, Nov. 2002. https://doi.org/10.1023/A:1020205217934
  6. Y. Hu, "CORDIC-Based VLSI Architectures for Digital Signal Processing," IEEE Signal Processing Magazine, Vol. 9, no. 3, pp. 16-35, Jul. 1992. https://doi.org/10.1109/79.143467
  7. D. E. Milos, T. Lang, Digital Arithmetic, Morgan Kaufmann, Jun. 2003.
  8. W. F. Loke, Y. W. Chia and P. Y. Chee, "Phase Wrapping Digital Polar Transmitter for Multi-band OFDM Ultra Wideband System," in Proc. of MTT-S International Conference, pp. 401-404, Jun. 2009.
  9. W. F. Loke, Y. W. Chia and P. Y. Chee, "Design Considerations for Multi-Band OFDM Polar Transmitter of UWB System," Electronics Letters, Vol. 43, no. 8, pp. 466-468, Apr. 2002.
  10. R. S. Murray, L. Seymour, L. John, Schaum's Outline of Mathematical Handbook of Formulas and Tables, McGraw-Hill, Oct. 1998.